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Parametric Cumulant Based Phase
Estimation of 1-D and 2-D Nonminimum

Phase Systems by Allpass Filtering
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Abstract—This paper proposes a parametric cumulant-based
phase-estimation method for one-dimensional (1-D) and two-
dimensional (2-D) linear time-invariant (LTI) systems with only
non-Gaussian measurements corrupted by additive Gaussian
noise. The given measurements are processed by an optimum
allpass filter such that a singleM th-order (M � 3) cumulant of
the allpass filter output is maximum in absolute value. It can be
shown that the phase of the unknown system of interest is equal
to the negative of the phase of the optimum allpass filter except
for a linear phase term (a time delay).

For the phase estimation of 1-D LTI systems, an iterative 1-D
algorithm is proposed to find the optimum allpass filter modeled
either by an autoregressive moving average (ARMA) model or
by a Fourier series-based model. For the phase estimation of
2-D LTI systems, an iterative 2-D algorithm is proposed that
only uses the Fourier series-based allpass model. A performance
analysis is then presented for the proposed cumulant-based
1-D and 2-D phase estimation algorithms followed by some
simulation results and experimental results with real speech
data to justify their efficacy and the analytic results on their
performance. Finally, the paper concludes with a discussion
and some conclusions.

I. INTRODUCTION

I DENTIFICATION of an unknown linear time-invariant
(LTI) system with Gaussian noise-corrupted measure-

ments of the system plays an important role in various
engineering applications such as seismic deconvolution, chan-
nel equalization, speech processing, and image processing.
It is known that system identification methods only using
correlations of are not able to recover the phase of

when it is nonminimum phase. In the past decade, many
cumulant-based methods [1]–[5] have been reported due to
two common properties of cumulants. One is that not only
the amplitude but also phase of can be recovered from
higher order cumulants of , and the other is that
cumulant-based methods are insensitive to additive Gaussian
noise because all higher order cumulants of Gaussian processes
are equal to zero.

Phase estimation can be performed basically with three cate-
gories of cumulant-based methods. The first category includes
cumulant-based estimation methods [1]–[5] that simultane-
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ously estimate the amplitude and phase of the unknown
system by estimating the parameters of an assumed
model for such as autoregressive (AR), moving average
(MA), or autoregressive moving average (ARMA) models.
The second category consists of minimum-phase (MP)-allpass
(AP) decomposition-based methods [6]-[12] that estimate the
amplitude of using a correlation-based method and
then estimate the phase of using a cumulant-based
method. The third category includes polyspectrum phase-
based methods [13]–[24] that estimate the phase of
from the phase of polyspectra of without involving
amplitude estimation of Most methods of the first and
second categories are parametric methods, but those of the
third category are nonparametric methods. In this paper, a
new cumulant-based phase-estimation method is proposed that
is a parametric method, but it neither involves amplitude
estimation of nor involves polyspectrum phase of
Next, let us briefly review the third category, followed by the
second category, in order to illuminate the distinctions of the
new method and the methods of these two categories.

Polyspectrum phase-based methods estimate the system
phase from the phase of an th-
order polyspectrum of based on a linear relationship
between the system phase and the polyspectrum phase
of Brillinger [13] and Lii and Rosenblatt [14] estimate

by a recursive formula with partial phase information of
bispectrum of These methods are sensitive to estimation
error of bispectrum phase due to recursive error propagation.
Matsuoka and Ulrych [15] proposed a least squares algorithm
that utilizes all bispectrum phase information to estimate ,
but it must compute a pseudo-inverse of a huge matrix.
Numerous least squares methods that make use of all phase
information of bispectrum or trispectrum of have been
reported in the open literature in the past five years such as
those reported in [16]–[20]. These least squares methods are
more robust to both additive noise and phase estimation error
of polyspectra of than those methods reported in [13] and
[14] using partial phase information of polyspectra of ,
but the former must compute the pseudo-inverse of a huge
matrix to solve for Recently, Li and Ding [21] proposed
a least squares method to estimate without needing
to compute the pseudo-inverse of matrices. Moreover, this
method is applicable for all th-order polyspectra.
As mentioned above, polyspectrum phase-based methods are
based on a simple linear relationship between the system phase

and the phase of polyspectra of , which is quite
suitable for nonparametric estimation of However, two
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common issues are faced with these methods. One is that to
obtain an accurate estimate for the phase of polyspectra of

requires a quite large number of data because of large
variance and low resolution of nonparametric polyspectrum
estimation methods, and the other is the phase unwrapping
problem. On the other hand, not many 2-D polyspectrum
phase-based methods [22]–[24] were reported because the two
common issues always lead to extraordinary complexity in the
design of phase-estimation methods. Dianat and Raghuveer
[22] use a Fourier series-based parametric model for both
phase and magnitude of 1-D and 2-D non-Gaussian signals
with the model parameters estimated from bispectra of data.
Kang et al. [23] proposed some recursive phase-estimation
algorithms based on the recursive formulas reported in [13]
and [15] for both 1-D and 2-D cases. Their algorithms estimate
principal values of from those of the bispectrum phase of

Takajo and Takahashi [24] also proposed a 2-D phase
estimation algorithm that is an extension of the 1-D phase
estimation algorithm reported in [19], whereas their algorithm
is quite complicated with its complexity dominated by the 2-
D phase unwrapping part. The crucial phase unwrapping part
of the phase-estimation algorithms reported in [22]–[24] may
not work well, especially when signal-to-noise ratio (SNR) is
not sufficiently high or when magnitude of polyspectra of data

has nulls (due to zeros of on the unit bicircle),
in addition to the other common issue (large variance and
low resolution) mentioned above. Moreover, to our knowledge,
the performance analysis of both 1-D and 2-D polyspectrum
phase-based methods is never reported except for limited
simulation results.

Parametric MP-AP decomposition-based methods, which
are free from the phase unwrapping problem, make use of the
decomposition , where is a
minimum-phase system having the same amplitude spectrum
with the unknown system , and is an allpass
filter. The estimation of (phase estimation) follows
the estimation of (amplitude estimation), and existing
correlation-based methods are used to obtain an estimate

Tugnait [6] searches for the desired from a
finite set of all the models spectrally equivalent to
such that cumulant functions associated with the desired
best match the associated sample cumulant functions of
Note that each member of is associated with an allpass
filter Instead, Chi and Kung
[9], [10] process with the inverse filter to
obtain a second-order “white process” , which is further
processed by each allpass filter (associated with )
such that a single th-order cumulant of the output, which
is denoted , of the optimum is maximum in
absolute value. Chi and Kung’s and Tugnait’s methods can
be thought of as phase classification methods, whereas the
former is computationally much more efficient than the latter.
Two common disadvantages of these methods are as follows.
One is that allpass factors get lost in the estimation of
because correlation functions are not only phase blind but
also allpass factor blind, and the other is that correlation-
based estimators of are sensitive to additive noise.
Giannakis and Mendel [7] estimate using slices of
the sixth-order cumulant function of through a quite
complicated procedure. Recently, Chi and Kung [11], [12]

have identified the parameters of by maximizing a
single th-order cumulant of instead of searching it
from those associated with This method not only
is able to provide an accurate estimate for including
the allpass factors of but also is less sensitive to additive
Gaussian noise than MP-AP decomposition-based methods
mentioned above. To our knowledge, MP-AP decomposition-
based methods are never used for the identification of 2-D
LTI systems possibly because of difficulties in the theoretical
extension of 1-D methods or extraordinary complexity.

This paper proposes a parametric cumulant-based phase-
estimation method that estimates the phase responseof
the unknown 1-D system by processing with an
optimum allpass filter such that a singleth-order
cumulant of the allpass filter output is maximum in absolute
value. The proposed method neither involves the amplitude
estimation of as MP-AP decomposition-based methods
do nor involves the use of polyspectra phase of as do
polyspectrum phase-based methods. Therefore, the proposed
method is less sensitive to additive Gaussian noise than most
MP-AP decomposition-based methods because, as mentioned
above, the latter resort to correlation-based methods for ampli-
tude estimation. Moreover, the proposed method is free from
the phase unwrapping problem of polyspectrum phase-based
methods. Furthermore, the proposed method is also extended
to the case of 2-D system phase estimation.

The organization of the paper is as follows. Section II
presents two parametric allpass models for the allpass fil-
ter including a well-known ARMA model and a Fourier
series-based model. Section III presents the new paramet-
ric cumulant-based phase-estimation method, including one
algorithm for 1-D LTI systems and one algorithm for 2-D
LTI systems using the allpass models presented in Section II.
Then, a performance analysis for the proposed 1-D and 2-D
phase-estimation algorithms is presented in Section IV. Some
simulation results as well as experimental results with real
speech data are then presented to support the proposed 1-D
and 2-D phase-estimation algorithms in Section V. Finally,
the paper concludes with a discussion and some conclusions.

II. PARAMETRIC ALLPASS MODELS

For notational simplicity, the same notations and
are used in this section without confusion for the

transfer function and phase of parametric allpass models with
parameters, respectively. Moreover, the frequency response

of any LTI system is simply denoted as
Two parametric allpass models, which will be used

for the phase estimation of 1-D and 2-D nonminimum phase
LTI systems in the next section, are the well-known ARMA
model [25] and a Fourier series-based model [22], which are
presented, respectively, as follows.

A. ARMA Allpass Model

It is known that a real th-order 1-D ARMA allpass filter
has the following transfer function [25]

(1)
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where is a th-order polynomial of with real
coefficients, i.e.,

(2)

It can be easily seen that and that if is a
pole of [i.e., a root of ], then must be a zero
of When is minimum phase (i.e., all the roots
of are inside the unit circle), is a causal stable
allpass filter; when is maximum phase (all the roots of

are outside the unit circle), is an anticausal stable
allpass filter. Note that cannot have zeros on the unit
circle; otherwise, it becomes unstable. Moreover, when
is causal (anticausal) stable, the inverse filter (which
is also an ARMA allpass filter) is anticausal (causal) stable.

Assume that is the phase response of an arbitrary real
allpass filter and that is known a priori. Then, one can
find an allpass filter given by (1) such that

(3)

approximates by using IIR filter design techniques such
as Deczky’s nonlinear approximation method [25], [26].

B. Fourier Series-Based Allpass Model

Because the unwrapped phase of a real filter is a periodic
odd function with period equal to , one can model a 1-D
allpass filter as

(4)

where

(5)

Note that the allpass model given by (4) and (5) is always
stable due to for all (i.e., the region of conver-
gence of includes the unit circle). Remark that Dianat
and Raghuveer [22] use the Fourier series-based model for
both phase and magnitude of non-Gaussian signals, whereas
we use the Fourier series-based model for an allpass system.

It is easy to see that for any arbitrary phase function ,
when

(6)

the series given by (5) for is exactly the Fourier
series expansion of It is known [27] that with

computed by (6) converges to as in the
mean-square-error (MSE) sense.

Next, let us present a real 2-D Fourier series-based allpass
model motivated by the proposed 1-D Fourier
series-based allpass model as follows [22]:

(7)

where

(8)

which is just a direct extension of given by (5) with
all the redundant terms removed. The 2-D parametric model

given by (8) can be used as an approximation
to an arbitrary 2-D phase response (of real 2-D LTI
systems).

As mentioned above, both the ARMA allpass model and
Fourier series-based allpass model can be used to approximate
a known phase function with model parameters solved
from However, when is not known, these two
allpass models can still be used to approximate , but
model parameters cannot be obtained from any longer.
In the next section, we present how these two models are used
for the phase estimate of an unknown LTI system with model
parameters solved from higher order cumulants.

III. PHASE ESTIMATION OF LTI
SYSTEMS BY ALLPASS FILTERING

Let us define the following notations for ease of later use:

Assume that is the 2-D noisy output signal of an unknown
2-D LTI system driven by a 2-D non-Gaussian input

as follows:

(9)

Let us make the following assumptions about and
:

A1) is real, zero-mean, independent identically dis-
tributed (i.i.d.) with th-order cumulant

A2) is zero-mean Gaussian, which can be white or
colored with unknown statistics.

A3) and are statistically independent.
A4) is a real stable LTI system that can be nonmin-

imum phase.
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It has been shown in [28] and [29] that the th-order
cumulant function of , i.e., joint cumulant of random
variables , is given by

(10)

and the th-order polyspectrum of (Fourier transform
of ) is given by

(11)

Although the signal model given by (9) and the associated
th-order cumulant function given by (10) and polyspectrum

given by (11) are for the 2-D case, they also apply for the
1-D case with and replaced by scalars and ,
respectively. The parametric cumulant-based phase-estimation
method to be presented below is based on the following
theorem.

Theorem 1: Assume that was generated from (9)
under the assumptionsA1) through A4). Let be the
output of an allpass filter with
input Then, the absolute th-order cumulant

of is maximum if and
only if

(12)

where is the phase of the unknown system
, and is an unknown constant row vector.

Moreover

(13)

Proof: It is easy to see that is the output of the
overall system

(14)

where

(15)

One can easily infer, from (11) and (14), that

(16)

Then, we have

(17)

It is trivial to show that if

(18)

the equality in (17) holds. What remains to be proven is that
the equality of (17) leads to (18).

Assume that is a continuous function of and that
without loss of generality. It can be inferred from

(17) that the equality of (17) requires

(19)

where is a constant and is an integer.
Substituting into (19) yields the
result , or and
Thus, (19) is equivalent to

(20)

which implies that is a linear function of or that (18) is
true. Therefore, we have completed the proof that

is maximum if and only if (12) holds.
Meanwhile, the equality of (17) leads to (13).

Let us emphasize that Theorem 1 is also applicable for the
1-D case with and replaced by scalars and

respectively, and replaced by
in (13). Note that Theorem 1 reduces to the corresponding
theorem reported in [12] when the unknown system is
a 1-D allpass system.

Without confusion, let us use to denote the given
measurements for both 1-D and 2-D cases. How the new
cumulant-based phase estimation method estimates the system
phase is shown in Fig. 1. Let pass through an
allpass model given by (1) or (4) (for the 1-D case)
or given by (7) (for the 2-D case), and let be
the associated output. By Theorem 1, except for an unknown
linear phase term (an unknown time delay), the phase of
the unknown system can be estimated as

(21)
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Fig. 1. New cumulant-based phase estimation method.

where is the phase of the optimum allpass model
obtained by maximizing the following objective function

(22)

where is a column vector containing all parameters of the
allpass model used, and , which is the sample
cumulant associated with , can be directly
calculated from the allpass model output For instance,
for

(23)

where is the total number of terms in the summation.
Note that is a highly nonlinear function of Therefore,
we have to resort to iterative optimization algorithms for
finding the optimum

A popular gradient-type iterative optimization algorithm
is considered for finding the maximum of At the th
iteration, is updated by

(24)

where is a positive constant, and denotes the gradient
of with respect to for , i.e.,

(25)

However, a local maximum rather than a global maximum of
can be obtained as the algorithm converges. A choice for

is , where is an integer, and
is a preassigned constant. If updating by (24) with
results in , one can repeat the process for

until As to the gradient
, for instance, it can be easily shown [12] from (22), (23),

and (25) that for

(26)

where the computation of and , depending on
the allpass model used, will be presented later. Next, let us
present the new phase-estimation method using the parametric
allpass models presented in Section II for 1-D case and 2-D
case, respectively.

A. 1-D Phase Estimation

The new phase estimation method for the 1-D case using
either the ARMA allpass model given by (1) or the Fourier
series-based allpass model given by (4) is implemented by the
following algorithm.

Algorithm 1:
S1) Set (the maximum of ), integer increment

parameter , and convergence parameter(a
small positive number). Choose the causal stable or
anticausal stable allpass model given by (1)
(ARMA model) or that given by (4) (Fourier series-
based model).

S2) Set (iteration number), , and
, which contains all the coefficients

of the allpass model used. Search for the
maximum of by the above iterative algorithm
with the initial condition , where is a

column vector containing zeros.
S3) Set Search for the maximum of

by the above iterative algorithm with

S4) If and , then
go to S3); otherwise, stop.

The optimum phase estimate is then obtained [see (21)]
as

(27)

For ease of later use,Algorithm 1 is referred to asAlgorithm
1 ARMA-CausalandAlgorithm 1 ARMA-Anticausalwhen the
ARMA allpass model chosen inS1) is causal and anticausal,
respectively;Algorithm 1is referred to asAlgorithm 1 Fourier
when the Fourier series-based allpass model is chosen inS1).
Note that to compute given by (22) and the gradient

(see (26) for the case ) in S2) and S3)
requires computation of and , which depend
on the allpass model chosen inS1). Next, let us discuss how to
compute and for Algorithm 1 ARMA-Causal,
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Algorithm 1 ARMA-Anticausal, and thenAlgorithm 1 Fourier,
respectively.

In association with Algorithm 1 ARMA-Causal and
Algorithm 1 ARMA-Anticausal, how to compute and

has been reported in [12]. Basically, when a
causal stable allpass model is used, both and
are obtained through a forward processing as follows:

(28)

(29)

On the other hand, when an anticausal stable allpass model is
used, they are obtained through a backward processing. Refer
to [12] for details.

Regarding the computation of and required
by S2) and S3) in Algorithm 1 Fourier, the former can be
simply obtained either by computing ,
where is the inverse FFT of , or by taking inverse
FFT of , and the latter can be simply
obtained by

(30)

The proof for the expression of given by (30) is
given in Appendix A.

Some worthy remarks for the proposed 1-D phase estimation
algorithm are given as follows:

R1) The iterative search algorithm used inS2) and S3)
guarantees the increase of whenever is
updated. Moreover, forAlgorithm 1 ARMA-Causal(or
ARMA-Anticausal), the obtained allpass model
in S2) andS3) must also be causal stable (or anticausal
stable) as chosen inS1) in addition to the increase
of On the other hand, is bounded
because is bounded by Theorem 1
[see (13)]. Therefore, the convergence of the proposed
1-D phase-estimation algorithm is guaranteed, but as
with other nonlinear optimization algorithms, it may
converge to a local optimum solution.

R2) The number of the allpass model parameters is
increased by for each iteration (each). Two reasons
for this are as follows. From our experience,Algo-
rithm 1 often converges faster for than for
with almost the same performance if the associated
maximum values are close to each other. The
other reason is that the desired optimum solution can
be chosen according to the resultant from a set
of solutions obtained byAlgorithm 1 with different
values of and in order to avoid some local optimum
solutions.

R3) Chi and Kung [12] proposed a cumulant-based all-
pass system identification algorithm that estimates the
phase of an unknown causal stable allpass system as

well by maximizing The obtained optimum
anticausal ARMA allpass filter turns out to be the
inverse filter of the unknown allpass system. However,
the optimum allpass filter obtained by the proposed
1-D phase-estimation algorithm can be thought of
as an optimum phase equalizer to remove the phase
distortion of the unknown (nonminimum phase) LTI
system , which itself can also be an allpass
system. In other words, Chi and Kung’s allpass system
identification algorithm is a special case ofAlgorithm
1 ARMA-Anticausalwhen is an allpass system.

R4) The proposed 1-D phase-estimation algorithm has a
computationally efficient parallel structure in com-
puting [see (29) and (30)]. The parallel
structure associated withAlgorithm 1 ARMA-Causalis
shown in Fig. 2(a), and that associated withAlgorithm
1 Fourier is shown in Fig. 2(b). However, the latter
is computationally faster than the former because

given by (30) is nothing but the output of
an FIR filter with only two nonzero coefficients (
and ) driven by , whereas that given by (29)
is the output of a th-order IIR filter driven
by both and

B. 2-D Phase Estimation:

The new phase estimation method for the 2-D case using
the proposed 2-D Fourier series-based allpass model given by
(7) is implemented by the following algorithm:

Algorithm 2:
S1) Set , and let be a column vector containing

all the coefficients of given by (8).
S2) Search for the maximum of by the the above

iterative algorithm with the initial condition

The optimum phase estimate is again obtained [see
(21)] as

(31)

Moreover, the computation of and required by
S2), is basically the same as that associated withAlgorithm 1
Fourier with the partial derivative given by

(32)

The proof for (32) is similar to that for (30) and thus is omitted
here.

There are also some worthy remarks regardingAlgorithm 2
described as follows:

R5) Algorithm 2 can be viewed as an extension ofAl-
gorithm 1 Fourier for the 2-D case, whereas the
2-D version ofAlgorithm 1 ARMA-Causalor (ARMA-
Anticausal) is not suggested due to complexity for
computing the gradient and lack of effi-
cient approaches to avoid instability of 2-D ARMA
allpass models. The statements described inR1),
R3) and R4) associated withAlgorithm 1 also apply
to Algorithm 2. In summary, the convergence of
Algorithm 2is guaranteed;Algorithm 2is an optimum
phase equalizer to remove the phase distortion of



1748 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 7, JULY 1997

(a)

(b)

Fig. 2. Parallel structure for computing the gradient ofJ(aaap) associated with (a)Algorithm 1 ARMA-Causaland (b)Algorithm 1 Fourier, respectively.

the unknown (nonminimum phase) LTI system ,
which itself can be an allpass system;Algorithm
2 has a parallel structure for efficiently computing

, which is also the output of an FIR filter

with only two nonzero coefficients ( and
[see (32)] driven by

R6) Note that 2-D LTI systems are generally nonsepa-
rable. The total number of unknown coefficients in
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given by (8) is

(33)

If it is known a priori that is separable, i.e.,

(34)

which implies

(35)

where and are the phase of the 1-D
systems and , respectively,
given by (8) can be reduced to

(36)

Then, Algorithm 1 Fouriercan be employed to esti-
mate with minor modifications for considerable
computational saving because

as computed using (33) for this case.
R7) The computation of given by (8) can also be

performed by FFT algorithms because one can form
a 2-D signal from such that becomes
the imaginary part of the 2-D Fourier transform of
the 2-D signal.

Let us conclude this section with the following
remark, which summarizes major distinctions of the
proposed 1-D and 2-D phase-estimation algorithms
and polyspectrum phase-based methods as well as
MP-AP decomposition-based methods.

R8) Algorithms 1and2, which estimate the system phase
[see (27) and (31)] by maximizing a single absolute

th-order cumulant of the used allpass model output
or with no need to perform amplitude

estimation of the unknown system or , as
well as MP-AP decomposition-based methods are free
from the phase unwrapping problem of polyspectrum-
based methods since the linear relationship between
the system phase and polyspectra phase of mea-
surements or is never involved. More-
over, they are less sensitive to additive Gaussian
noise than most MP-AP decomposition-based meth-
ods when SNR is low because the latter resort to
the correlations of or (sum of correlations
of noise-free measurements and those of additive
noise) for amplitude estimation of or , as
mentioned in the introduction section. On the other
hand, when can be accurately estimated, MP-
AP decomposition-based methods can perform better
than the proposed cumulant-based phase-estimation
method. For instance, when SNR is high, an accurate
estimate for the minimum-phase system can
be obtained by correlation-based methods, thus lead-
ing to an accurate estimate for obtained from
the finite set of all the models spectrally equivalent

to the estimated Finally, the proposed 1-
D and 2-D phase-estimation algorithms are neither
linear estimators nor simple recursive estimators such
as those reported in [14]–[16] and thus require larger
computational load than most linear or recursive es-
timators.

IV. PERFORMANCE ANALYSIS

In this section, let us present a performance analysis for the
proposed cumulant-based phase-estimation algorithm,Algo-
rithm 1 (ARMA-Causal, ARMA-Anticausaland Fourier) used
for the 1-D case. The performance analysis associated with
Algorithm 1 basically applies toAlgorithm 2 as well because
they were developed based on the same philosophy except that
the latter is used for the 2-D case.

It is known [25] that the phase [given by (3)] of the ARMA
allpass model used byAlgorithm 1 ARMA-Causaland
Algorithm 1 ARMA-Anticausalis continuous, whereas the
group delay

grd

for all when is causal stable, and grd
for all when is anticausal stable. It is also known that
the phase of the Fourier series-based allpass model [see (5)]
used byAlgorithm 1 Fourieris continuous [27]. Moreover, the
absolute th-order cumulant of the allpass
filter output is invariant for either of [or ] and

[or ], i.e., is invariant for either
of and , but or no
matter which allpass model is used byAlgorithm 1. Therefore,
Algorithm 1, which tries to maximize [see
(22)], has the following property:

P1) The optimum phase estimate given by (27) is
continuous, although the true system phase itself
can have discontinuities; meanwhile, is blind to
a constant when

Let denote the phase-estimation error associated with
Algorithm 1, i.e.,

(37)

where is the phase of the optimum allpass filter obtained
by Algorithm 1. Note that is also the phase of the overall
system ; therefore, is equal to given by
(15) with replaced by and replaced by

It can be easily inferred by (16) that the optimumth-order
polyspectrum of the output of the
optimum allpass filter is given by

(38)

where

(39)
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and

(40)

As mentioned inR3), the optimum allpass filter obtained by
Algorithm 1 is an optimum phase equalizer that implies that

and can be thought of as phase residual
and th-order polyspectrum phase residual of the overall
system , respectively. Moreover, the th-order
polyspectrum phase residual when

, i.e., is blind to any linear phase
term in Therefore, without loss of generality, let us
assume that the unknown linear phase term in has been
removed in the following performance analysis.

Because is the -D Fourier
transform of the real th-order cumulant function

of

(Hermitian), and thus, the th-order cumulant
can be expressed as

(41)

which further leads to the simplification of
(maximized byAlgorithm 1) as follows:

(42)

to the second-order Taylor series approximation assum-
ing that Therefore, maximizing

given by (42) is equivalent to minimizing
the following cost function:

(43)

which implies the following property ofAlgorithm 1:

P2) The phase estimate is a weighted least squares
(WLS) estimate [30] by minimizing squares of
polyspectrum phase residual with
absolute th-order polyspectrum of (which also
equals absolute th-order polyspectrum of ) as
the weighting function.

When is an allpass system, i.e.,
, the cost function given by (43)

reduces to

(44)

where we have used the following results in the derivation of
(44):

for all

and

for all

since given by (37) is an odd function (i.e.,
). The cost function given by (44) implies the

following property ofAlgorithm 1:
P3) When the unknown system is an allpass sys-

tem, the phase estimate is a least squares (LS)
estimate by minimizing squares of the overall system
phase residual

Next, let us turn back to the case that is an arbitrary
LTI system. It can be shown that the cost functiongiven
by (43) satisfies the following inequality:

(45)

The proof for (45) is given in Appendix B. Note that the
inequality of (45) qualitatively implies (rather than rigorously
proves) the following property ofAlgorithm 1:

P4) The smaller (weighted squares
of ), the smaller the cost function will be.
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Therefore, it can be predicted that as any WLS esti-
mator [30], the absolute phase estimation error
associated withAlgorithm 1 is smaller (larger) when
the weight is larger (smaller). This is consis-
tent with the fact that larger leads to higher
SNR for the frequency componentin data and,
therefore, leads to smaller

Let us discuss a limiting case of smaller leading
to larger phase-estimation error as mentioned inP4). Assume
that has a pair of zeros on the unit circle, i.e.,

, which results in a pair of discontinuities
of magnitude equal to in the true system phase for

Therefore, it is impossible to recover the system
phase for simply because does not carry any
phase information about In other words, the phase
estimates obtained byAlgorithm 1always show larger phase-
estimation error in the vicinity of discontinuities of the true
system phase Therefore,Algorithm 1 has the following
property:

P5) When the system phase has discontinuities due to
zeros on the unit circle, the absolute phase-estimation
error is always large in the vicinity of discon-
tinuities even if SNR

Next, let us discuss the consistency property ofAlgorithm
1. Assume that does not have any zeros on the unit
circle (i.e., the system phase is continuous for all ). It
is well known [27] that the periodic continuous system phase
can be expressed as a Fourier series (as given by (5) and (6)
for ) with uniform convergence. Moreover, it is known
that the continuous system phase can also be modeled by the
phase of an ARMA allpass filter given by (1) of sufficient
order except for a constant group delay [25]. Moreover, the
sample cumulant is known to be a consistent
estimate of [3]. The above discussion leads to
the following property ofAlgorithm 1:

P6) Assume that does not have any zeros on the unit
circle. The phase estimate [which is continuous
as mentioned inP1)] is a consistent estimate except
for a linear phase term as In other words,
if the continuous system phase can be exactly
modeled as either of (3) or (5) for a finite , the
obtained phase estimate with is a consistent
estimate except for a linear phase term.

As mentioned above, the propertiesP1)–P6) also apply to
Algorithm 2 for the 2-D case since bothAlgorithms 1 and
2 were developed based on the same philosophy. Next, let
us present some simulation results and experimental results
to support the proposed cumulant based 1-D and 2-D phase-
estimation algorithms and the performance analysis presented
in this section.

V. SIMULATION AND EXPERIMENTAL RESULTS

The simulation results to be presented for 1-D phase esti-
mation using the proposedAlgorithm 1 include two examples
(Examples 1 and 2). Then, some experimental results with real
speech data usingAlgorithm 1are presented in Example 3. For
2-D phase estimation, two examples (Examples 4 and 5) using
the proposedAlgorithm 2 are presented. Next, let us turn to
the three examples for 1-D phase estimation.

A. 1-D Phase Estimation

The first simulation example is a performance test on
Algorithm 1, and the second simulation example is a 1-D LTI
system having a pair of zeros on the unit circle. Let us turn
to Example 1.

Example 1—Performance Test:The noise-free data were
generated by letting a zero-mean, exponentially distributed
i.i.d. random sequence with variance and
skewness input to a nonminimum phase ARMA(3,
2) LTI system with transfer function

(46)

whose poles are located at and and zeros are
located at and . Magnitude response of the sys-
tem is shown in Fig. 3(a). Then, the noisy data of length

were obtained by adding a colored Gaussian noise
sequence, which was generated from the output of a second-
order highpass FIR filter with coefficients
driven by a white Gaussian noise sequence, to the noise-free
data for SNR dB. The cumulant order used was
Thirty independent runs were performed usingAlgorithm 1
ARMA-Causaland ARMA-Anticausalwith and

and Algorithm 1 Fourier with and ,
respectively, and the obtained 30 phase estimates of the system
were plotted in an overlaid fashion to indicate the variability
of Algorithm 1.

Fig. 3(b)–(d) shows 30 continuous phase estimates obtained
by Algorithm 1 ARMA-Causal, Algorithm 1 ARMA-Anticausal
and Algorithm 1 Fourier, respectively, with unknown lin-
ear phase factors artificially removed as well as constant

artificially compensated (since due to
) [seeP1)]. The respective averages

of the 30 phase estimates associated with Fig. 3(b)–(d) are
depicted by a dashed line, a dash-dot line, and a dotted line,
respectively, in Fig. 3(e), together with the true continuous
phase (solid line). One can observe from these figures that
mean and standard deviation of the phase estimates obtained
by the proposed 1-D phase estimation algorithm are smaller for
those frequencies where the magnitude response of the system
[shown in Fig. 3(a)] is larger. This is consistent withP1) and
P4). This is particularly manifest in the vicinity of ,
where is maximum, and in the vicinity of ,
where is quite small. Moreover, a considerable phase
estimation error for can be observed in
Fig. 3(e) (dash-dot line and dotted line) because the magnitude
response for is much smaller than that for

[see Fig. 3(a)]. The simulation results shown in
Fig. 3(b) (which is associated withAlgorithm 1 ARMA-Causal)
are slightly better than those shown in Fig. 3(d) (which is
associated withAlgorithm 1 Fourier), which are also slightly
better than those shown in Fig. 3(c) (which is associated with
Algorithm 1 ARMA-Anticausal) according to their respective
bias and variance. Nevertheless, the simulation results shown
in Fig. 3(b)–(e) demonstrate that the proposed 1-D phase
estimation algorithm can be used to estimate the system phase
of 1-D LTI systems.

Example 2—System Phase with Discontinuities:This ex-
ample examines the performance of the proposed 1-D phase
estimation algorithm when the system phase has a pair of
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(a) (b)

(c) (d)

Fig. 3. 1-D simulation results forM = 3 (cumulant order), SNR= 10 dB andN = 1024 associated with Example 1. (a) Amplitude responsejH(!)j of
the system; 30continuous phase estimates�̂(!) obtained by (b)Algorithm 1 ARMA-Causalwith pmax = 5 and s = 5; (c) Algorithm 1 ARMA-Anticausal
also with pmax = 5 and s = 5; and (d) Algorithm 1 Fourier with pmax = 4 and s = 4; respectively.

discontinuities of magnitude equal to in the frequency
interval due to a pair of complex conjugate zeros
on the unit circle. A nonminimum phase system ARMA(3,4)
with transfer function

(47)

was used that has poles located at and and
zeros located at and The
magnitude response of the system is shown in Fig. 4(a) from
which a spectral null at can be seen. The
simulation data were generated (for and ,
SNR and 5 dB) following the same procedure as
described in Example 1, except that only a single realization
of measurements was generated with measurement noise
assumed to be white Gaussian. Then,Algorithm 1 ARMA-
Causal and Algorithm 1 Fourier were employed to estimate

the system phase with or
and or Then, the optimum was chosen
from the obtained solutions associated with and
as mentioned inR2).

For comparison, an MP-AP decomposition-based method
was also used to estimate with the same simulation
data. In the first step of the MP-AP decomposition-based
method, the minimum-phase (which is
an ARMA(3,4) model) was estimated using the least squares
modified Yule–Walker equations (LSMYWE) [31], [32] for
the AR parameters and Durbin’s method [31], [33] for the
MA parameters. The modified Yule–Walker equations (i.e.,
linear equations relating the autocorrelation function
to AR parameters) for were used to obtain

, and then, was processed by the system to
obtain the MA(4) process Then, was processed to
obtain an AR model of order equal to using
Burg’s method [31], [34], and was obtained using the
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(e)

Fig. 3 (continued). 1-D simulation results forM = 3 (cumulant order), SNR= 10 dB andN = 1024 associated with Example 1. (e) Respective averages
of the 30 estimates shown in parts (b)–(d) (dashed line, dash-dot line, and dotted line) together with the true system phase�(!) (solid line).

autocorrelation method [31], [35] with
(coefficients of ) as the data. In the second step of
the MP-AP decomposition-based method, Chi and Kung’s
cumulant-based allpass filter classification method [9], [10]
was used to determine the optimum associated with
the set of all the ARMA(3, 4) models spectrally equivalent
to Finally, the optimum was obtained as the
phase of

The simulation results are shown in Fig. 4(b)–(d). For
SNR , the obtained continuous phase estimates
associated withAlgorithm 1 ARMA-Causal(short dash

line for and long dash line for ) and those asso-
ciated withAlgorithm 1 Fourier(short dash-dot line for
and long dash-dot line ) together with the true system
phase (solid line) are shown in Fig. 4(b), where unknown
linear phase factors were artificially removed, and constant
was artificially compensated due to [seeP1)].
The phase estimate obtained by the MP-AP decomposition-
based method is also shown in Fig. 4(b) by a dotted line.
Fig. 4(c) and (d) shows the results corresponding to those
shown in Fig. 4(b) for SNR 5 dB, whereas for
the former, and for the latter. One can see, from
Fig. 4(b)–(d), thatAlgorithm 1performs better for larger or
higher SNR, and it also performs better for smallerbecause
the variance of sample cumulants is larger for larger cumulant
order [3]. As predicted [seeP4) andP5)], the phase estimation
error associated withAlgorithm 1 is smaller for all , where

is continuous with larger , and it is large for those
frequencies in the vicinity of the phase discontinuity at

On the other hand, the phase estimates [dotted lines in
Fig. 4(c) and (d)] associated with the MP-AP decomposition-
based method obviously are not good approximations of
for SNR dB (low SNR) as mentioned inR8). However,
one can see from Fig. 4(b) that even for the case of SNR,
the performance of the MP-AP decomposition-based method is
not better than that ofAlgorithm 1. This is also consistent with

R8) because was not accurately estimated though
SNR The reason for this is as follows. The power
spectrum of is equal to zero for due to the
associated pair of zeros of on the unit circle, and thus, the
estimation of the minimum phase (without zeros on
the unit circle) is never perfect even if SNR Globally
speaking, these simulation results support that the proposed
1-D phase estimation algorithm can be used to estimate the
phase of 1-D LTI systems, regardless of whether or not there
are zeros on the unit circle.

Let us conclude this example with more simulation results,
which were obtained with the same simulation data through
amplitude equalization followed by phase estimation. The
data were preprocessed by the inverse filter ,
where was the one obtained by the above MP-
AP decomposition-based method, and thus, the inverse filter
output, which is denoted , can be thought of as the output
of the overall system driven by an i.i.d. non-
Gaussian input Then, Algorithm 1 ARMA-Causalwith

or was employed to process
to obtain a phase estimate of , and

the phase estimate of was obtained by adding the
phase of to The obtained phase estimates
(short dash line for SNR , long dash line
for SNR dB, and long dash-dot line for

SNR dB) are shown in Fig. 4(e) together with
the true system phase (solid line). Again, one can see
from Fig. 4(e) thatAlgorithm 1performs better for larger or
higher SNR and that these phase estimates are also consistent
with the predicted propertiesP4) and P5) as well. Note that
inaccurate estimation of for the case of SNR
dB, which leads to inaccurate phase estimates [dotted lines in
Fig. 4(c) and (d)] associated with the MP-AP decomposition-
based method, still ends up with good phase estimates [long
dash line and long dash-dot line in Fig. 4(e)] associated with
the proposed 1-D phase estimation algorithm. This implies
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(a) (b)

(c) (d)

(e)

Fig. 4. 1-D simulation results associated with Example 2 obtained byAlgorithm 1 ARMA-Causal, Algorithm 1 Fourierand an MP-AP decomposition-based
method for a nonminimum phase system with a pair of zeros on the unit circle. (a) Amplitude responsejH(!)j of the system. (b) Phase estimates�̂(!)
for N = 1024 and SNR= 1 associated withAlgorithm 1 ARMA-Causal(short dash line forM = 3 and long dash line forM = 4), Algorithm 1
Fourier (short dash-dot line forM = 3 and long dash-dot line forM = 4); and the MP-AP decomposition-based method (dotted line), together with
the true system phase�(!) (solid line). (c) Phase estimateŝ�(!) corresponding to (b) forN = 1024 and SNR= 5 dB. (d) Phase estimateŝ�(!)
corresponding to (b) forN = 4096 and SNR= 5 dB. (e) Phase estimateŝ�(!) for M = 3 (short dash line forN = 1024 and SNR= 1; long
dash line forN = 1024 and SNR= 5 dB, and long dash-dot line forN = 4096 and SNR= 5 dB) obtained by processing amplitude equalized data
with Algorithm 1 ARMA-Causaltogether with the true system phase�(!) (solid line).

that the proposed 1-D phase estimation algorithm is robust to
the preprocessing of amplitude equalization. Moreover, these
simulation results also indicate similar performance of the pro-
posed 1-D phase estimation algorithm, regardless of whether
data or amplitude equalized data were processed
for this example. Let us emphasize that the performance of the
proposed 1-D phase estimation algorithm depends on SNR and

phase characteristics associated with the data to be processed.
In practice, it may be unknown that higher SNR and simpler
phase characteristics are associated with data without
preprocessing or associated with amplitude equalized data

Therefore, whether preprocessing of the given data can
improve the performance of the proposed phase estimation
algorithms needs further study.
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(a)

(b)

(c)

(d)

Fig. 5. Experimental results with real speech data forM = 4 associated with Example 3. (a) Windowed speech data (by Hamming window) of sound
=a: = uttered by a man (sampling rate equal to 8k Hz). (b) Predictive deconvolved speech signal~u(n) obtained by a correlation-based 12th-order LPE
filter (obtained by Burg’s algorithm). (c) Deconvolved signalû(n) obtained by the deconvolution filterHINV(!) given by (48). (d) Impulse response
of the estimated vocal tract filter.

Example 3—Experimental Results with Real Speech Data:
It is known [36] that a speech signal can be modeled as (9),
where is the vocal tract filter (possibly with nonminimum
phase), and the driving input is a pseudo-periodic (non-

Gaussian) impulse train for voiced speech and a white noise
sequence for unvoiced speech. In this example, a set of real
voiced speech data from a sound uttered by a man
was obtained through a 16-bit A/D converter with a sampling
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(a) (b)

(c) (d)

(e)

Fig. 6. 2-D simulation results forM = 3 associated with Example 4 obtained byAlgorithm 2with p1 = p2 = 3 (Pnum = 24) for a separable 2-D system
with continuous phase response. (a) Amplitude responsejH(!1; !2)j of the system. (b) Phase response�(!1; !2) of the system; phase estimates�̂(!1; !2)
for (c) N = 64 � 64 and SNR= 5 dB. (d)N = 64 � 64 and SNR= 1: (e) N = 128 � 128 and SNR= 5 dB.

frequency of 8 kHz. Then, the speech data were premultiplied
by a Hamming window for further processing. Next, let
us present some experimental results with the windowed
data.

The experimental results are shown in Fig. 5. The windowed
speech data shown in Fig. 5(a) were processed by a 12th-order
minimum-phase linear prediction error (LPE) filter—denoted

—obtained by Burg’s algorithm [31] to get the predictive
deconvolved signal , which is shown in Fig. 5(b). It can
be seen, from Fig. 5(b), that approximates a pseudo-

periodic impulse train with some phase distortion because only
amplitude response of the vocal tract filter can be equalized
by the minimum-phase LPE filter , and the vocal tract
filter is not minimum-phase for this case. This implies that
phase estimation of the vocal tract filter is needed. With the
windowed data shown in Fig. 5(a), the proposedAlgorithm 1
ARMA-Anticausalwith and cumulant order

was employed to obtain a phase estimate of the
vocal tract filter. Then, the windowed data shown in Fig. 5(a)
were processed by a deconvolution filter (corresponding to an
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(f) (g)

Fig. 6 (continued). 2-D simulation results forM = 3 associated with Example 4 obtained byAlgorithm 2with p1 = p2 = 3(Pnum = 24) for a separable
2-D system with continuous phase response. (g) Phase estimation errore(!1; !2) associated with (f).

inverse filter of the vocal tract filter)

(48)

to get the estimate , which is shown in Fig. 5(c). One can
see, from Fig. 5(b) and (c), that approximates a pseudo-
periodic impulse train much better than with the phase
distortion considerably removed by the deconvolution filter

and that the pitch period can be easily found to
be 70 samples (i.e., 8.75 ms) from the two most significant
impulses in Fig. 5(c). These results justify that the proposed
Algorithm 1 ARMA-Anticausalprovides a good phase estimate
of the vocal tract filter and that the LPE filter provides a
good inverse amplitude estimate of the vocal tract filter; thus,

is a good estimate for the the vocal
tract filter. The estimated vocal tract filter is shown
in Fig. 5(d), which shows considerable resemblance to the
windowed data [which is shown in Fig. 5(a)] of one pitch
period and the length of the vocal tract filter approximately
equal to two pitch periods. These experimental results also
support the feasibility of collaboration of the proposed phase
estimation method and amplitude estimation methods.

We also performed the same experiment with other speech
data, which led to the same conclusions as drawn from Fig. 5,
although these experimental results were not included here
due to space limitations.

B. 2-D Phase Estimation

Let us present two simulation examples (Examples 4 and 5
below) to demonstrate the efficacy ofAlgorithm 2for the phase
estimation of 2-D LTI systems. Example 4 is for a separable 2-
D LTI system with continuous phase, and Example 5 is for the
case that the system phase has discontinuities in the domain

In each of the two
examples, the unknown linear phase term in the phase estimate

was artificially removed for ease of comparison with
the true system phase Next, let us turn to Example
4.

Example 4—Separable 2-D System with Continuous Phase:
A 2-D MA system with a separable transfer function

given by

(49)

was used in the simulation. Magnitude response
and phase response are shown in Fig. 6(a) and (b),
respectively, where

(50)

was plotted with and to eliminate linear
phase factors. Again, a zero-mean exponentially distributed
i.i.d. random field with variance and skewness

was convolved with to obtain the noise-free
synthetic data SNR to which white Gaussian noise
was added to form the synthetic data for SNR dB. As
mentioned inR6), when it is knowna priori that the system is
separable, the 2-D Fourier series-based phase model given by
(8) reduces to the sum of two 1-D Fourier series-based phase
models as given by (5). However, in this example,Algorithm
2 with and was employed to estimate the
system phase, assuming that the separability of the system was
not knowna priori. Thus, the total number of coefficients used
in the 2-D Fourier series-based allpass model was
for this case.

The obtained continuous phase estimates for
are shown in Fig. 6(c) and 6(d) for SNR

dB and , respectively. The results for
corresponding to those shown in Fig. 6(c) and (d) are shown
in Fig. 6(e) and (f) (SNR dB and , respectively. One
can see, from Fig. 6(b)–(f), that approximates the
true continuous system phase better for larger
and SNR. Moreover, Fig. 6(g) shows the phase estimation
error associated with the phase estimate
shown in Fig. 6(f) and SNR From
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(a) (b)

(c) (d)

(e)

Fig. 7. 2-D simulation results forM = 3 associated with Example 5 obtained byAlgorithm 2 with p1 = p2 = 5 (Pnum = 60) for a nonseparable 2-D
system with discontinuities in phase response. (a) Amplitude responsejH(!1; !2)j of the system. (b) Phase response�(!1; !2) of the system; phase estimates
�̂(!1; !2) for (c) N = 128 � 128 and SNR= 5 dB. (d)N = 128� 128 and SNR= 1: (e) N = 256� 256 and SNR= 5 dB.

Fig. 6(g), one can see that approximates
[see Fig. 6(b)] well and that is smaller for those

where [see Fig. 6(a)] is larger. These
simulation results are consistent withP1) as well asP4) and
demonstrate the phase retrieval capability ofAlgorithm 2.

Example 5—2-D System Phase with Discontinuities:A
nonseparable MA system with transfer function given by

(51)

was used whose magnitude and phase
responses are shown in Fig. 7(a) and (b), respectively. Spectral
nulls in and discontinuities (jumps of or ) in

can be seen from these Fig. 7(a) and (b). Synthetic
fields were generated for

SNR dB and SNR , following the
same procedure as Example 4. Then, each synthetic 2-D field

was processed byAlgorithm 2 with and
(and thus ).

The obtained continuous system phase estimates
for are shown in Fig. 7(c) and (d) for SNR
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(f) (g)

Fig. 7 (continued). 2-D simulation results forM = 3 associated with Example 5 obtained byAlgorithm 2 with p1 = p2 = 5 (Pnum = 60) for a
nonseparable 2-D system with discontinuities in phase response. (f)N = 256�256 and SNR=1: (g) Phase estimation errore(!1; !2) associated with (f).

dB and , respectively. The results for
corresponding to those shown in Fig. 7(c) and (d) are shown in
Fig. 7(e) and (f) (SNR dB and , respectively. Again,
one can see from Fig. 7(b)–(f) that approximates
the true system phase better for larger and SNR,
although has discontinuities. Moreover, Fig. 7(g)
shows the phase estimation error associated with the
phase estimate shown in Fig. 7(f)
and SNR ). As predicted [seeP4) and P5)],
is small for all , where is continuous, but
large phase estimation error can happen in the vicinity of those

, where is not continuous. In order to give
a further insight of the estimated continuous phase ,
Fig. 8 shows four slices (dashed lines) of the phase estimate

shown in Fig. 7(f) for
together with the associated four slices of the true
(solid lines). The slice associated with shown in
Fig. 8(a) indicates that the true (solid line) has
a discontinuity of , and the estimated continuous phase

also approximates well, except in the
vicinity of the discontinuity. These results are consistent with
the results presented in Example 2 for a 1-D system with
discontinuous phase. The slice associated with
shown in Fig. 8(c) indicates that the phase-estimation error

can also be larger for those frequencies
where the absolute value of group delay
is larger, i.e., the system phase has a steeper variation. For the
other slices shown in Fig. 8(b) and (d), approximates

well since the latter is continuous with small group
delay.

The simulation results presented in this section support that
the proposed 1-D and 2-D cumulant-based phase-estimation
algorithms are effective for both 1-D and 2-D LTI systems.

VI. DISCUSSION AND CONCLUSIONS

Based on the ARMA allpass model, the proposed Fourier
series-based allpass model, and Theorem 1, we have presented
a parametric cumulant-based phase-estimation method imple-
mented byAlgorithms 1 and 2 for estimating the phase of
1-D and 2-D nonminimum phase LTI systems with only non-
Gaussian measurements. The system phase is estimated from

an optimum allpass filter that is obtained by maximizing a
single absolute cumulant of the allpass filter output.Algorithm
1 ARMA-Causal(Anticausal) andAlgorithm 1 Fourierare used
for 1-D LTI systems andAlgorithm 2 (associated with the
Fourier series-based allpass model) for 2-D LTI systems. These
algorithms are iterative optimization algorithms with a parallel
structure suitable for efficient implementation of both software
and hardware. Moreover, optimum allpass filters obtained by
the proposed phase estimation algorithms can be thought of as
optimum phase equalizers to the unknown system of interest.
In channel equalization (in communications), the unknown
channel (or system) can be a phase distortion channel [25, p.
441], [37], although it frequently is a nonminimum phase LTI
channel. The performance of the proposed phase-estimation
method depends on SNR and channel phase characteristics
associated with the data to be processed. Whether prepro-
cessing of the given data such as amplitude equalization can
improve the performance of the proposed phase estimation
method needs further study (as mentioned in Example 2). Let
us emphasize that the proposed 1-D and 2-D phase-estimation
algorithms are not only applicable when the phase of the
unknown LTI system is of interest but also applicable in
collaboration with amplitude estimators for the identification
and equalization of the system (as mentioned in Example 3).

A performance analysis for the proposed phase-estimation
algorithms was also presented, and the analysis leads to six
properties of the proposed phase-estimation algorithms. Then,
some simulation results for different cumulant order, data
length , and SNR, as well as some experimental results with
real speech data, were offered to support that the proposed
phase estimation algorithms can be used to estimate the phase
of 1-D and 2-D LTI systems. The simulation results were also
consistent with the performance analysis. However, we would
like to make the following remarks regarding the presented
simulation and experiment:

R9) The proposed 1-D and 2-D phase-estimation al-
gorithms may still converge to a local optimum
solution, although the use of different choices for the
parameter in S1) of Algorithm 1 can reduce this
possibility for the 1-D case. The values ofused
in the presented simulation and experiment are good
choices only for these simulation and experimental
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(a) (b)

(c) (d)

Fig. 8. Four slices of the phase estimate�̂(!1; !2) shown in Fig. 7(f) along (a)!1 = 0; (b) !1 = 2�=7; (c) !1 = 4�=7; and (d)!1 = 6�=7:

results. In other words, a good choice forcan only
be obtained by comparing the resultant objective
functions through some choices for

R10) Algorithm 1 Fourier is computationally faster than
Algorithm 1 ARMA-Causal(Anticausal) with similar
performance as discussed inR4), but for the latter,
there are not any rules available yet for the choice
of the ARMA allpass model to be causal stable
or anticausal stable, which can always lead to best
phase-estimation accuracy with least computational
expense. This may need further study.

The proposed phase-estimation algorithms do not belong to
any of the three categories of cumulant-based phase estimators
mentioned in the introduction because they are based on
philosophies that are different from those associated with

phase estimators of the three categories. Again, as men-
tioned in the introduction, there are not many 2-D cumulant-
based phase-estimation algorithms [22]–[24] reported in the
literature; meanwhile, their performance and efficiency are
limited by the phase unwrapping problem. Moreover, MP-
AP decomposition-based methods have yet to be extended
to the 2-D case. Thus,Algorithm 2 can be a quite efficient
one. Extension of the proposed phase-estimation algorithms
to the -dimensional ( -D) case is also feasible
by the same theorem (Theorem 1) withand defined as

row vectors. Applications of the proposed cumulant
phase-estimation algorithms such as in system identification,
deconvolution, equalization, time delay estimation (estimation
of the time interval that a single source signal arrives at
two spatially separate sensors), signal detection, and harmonic
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retrieval are under study, and the results will be reported in
the future.

APPENDIX A
PROOF OF (30)

Because is the output of the allpass filter with
the input can be expressed
as

(A.1)

Substituting (4) into (A.1), we obtain

(A.2)

which is nothing but the inverse Fourier transform of
Therefore (A.2) can also be expressed as the

convolution of and the inverse Fourier transform of

as follows:

(A.3)

Q.E.D.

APPENDIX B
PROOF OF INEQUALITY GIVEN BY (45)

It can be easily inferred from (40) that

(B.1)

by the Schwartz inequality. Next, one can easily show, by
(39), that

for all (B.2)

where the first equality (the first two lines) of (B.2) is proved
by changing variables of

and by the fact that (which is an even
function). Then we can obtain, from (39), (43), (B.1), and
(B.2), that

(B.3)

where we have applied the Schwartz inequality to the integral
inside the braces in the second line of (B.3). It is trivial to
see that the right-hand side of (B.3) is equal to the right-hand
side of (45).

Q.E.D.
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