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Parametric Cumulant Based Phase
Estimation of 1-D and 2-D Nonminimum
Phase Systems by Allpass Filtering

Horng-Ming Chien, Huang-Lin Yang, and Chong-Yung C8&énior Member, IEEE

Abstract—This paper proposes a parametric cumulant-based ously estimate the amplitude and phase of the unknown
phase-estimation method for one-dimensional (1-D) and two- system h(n) by estimating the parameters of an assumed
d'megs'on"’?' (2-D) linear time-invariant %‘Tg SVS(;*;.”?S W'g‘ only model fori(n) such as autoregressive (AR), moving average
non-Gaussian measurements corrupted by additive Gaussian - :
noise. The given measurements are processed by an optimum(MA)’ or autoregressive mo"'”g "’?V.erage (ARMA) models.
allpass filter such that a singleMth-order (M > 3) cumulant of 1 ne seécond category consists of minimum-phase (MP)-allpass
the allpass filter output is maximum in absolute value. It can be (AP) decomposition-based methods [6]-[12] that estimate the
shown that the phase of the unknown system of interest is equal amplitude of A(n) using a correlation-based method and
to the negative of the phase of the optimum allpass filter except then estimate the phase 6f(n) using a cumulant-based
for a linear phase term (a time delay). method. The third category includes polyspectrum phase-

For the phase estimation of 1-D LTI systems, an iterative 1-D .
algorithm is proposed to find the optimum allpass filter modeled based methods [13]-{24] that estimate the phase/(f)

either by an autoregressive moving average (ARMA) model or from_the pha_se (_)f polyspectra of(n) without invplving
by a Fourier series-based model. For the phase estimation of amplitude estimation of(n). Most methods of the first and

2-D LTI systems, an iterative 2-D algorithm is proposed that second categories are parametric methods, but those of the
only uses the Fourier series-based allpass model. A performancethjrd category are nonparametric methods. In this paper, a
analysis is then presented for the proposed cumulant-based e,y cymulant-based phase-estimation method is proposed that

1-D and 2-D phase estimation algorithms followed by some . tri thod. but it ither | | litud
simulation results and experimental results with real speech IS a parametric method, but It neither involves amplituae

data to justify their efficacy and the analytic results on their €stimation ofh(n) nor involves polyspectrum phase ofn).
performance. Finally, the paper concludes with a discussion Next, let us briefly review the third category, followed by the
and some conclusions. second category, in order to illuminate the distinctions of the
new method and the methods of these two categories.
I. INTRODUCTION Polyspectrum phase-based methods estimate the system

: ... phasef(w) = arg {H(z = ¢/*)} from the phase of ad/th-
I DENTIFICATION of an unknown linear time-invariant order(>3) polyspectrum ofi:(n) based on a linear relationship

(LTI) systemh(n) with Gaussian noise-corrupted measurgs . een the system phasés) and the polyspectrum phase

mer?tsx(@ of the_ system plays an Important role In varioUzy x(n). Brillinger [13] and Lii and Rosenblatt [14] estimate
engineering applications such as seismic deconvolution, ch ) by a recursive formula with partial phase information of

nel equalization, speech processing, and image processyy pectrum ofc(n). These methods are sensitive to estimation

It is kn_own that system identification methods only usin rror of bispectrum phase due to recursive error propagation.
correlations ofxz(n) are not able to recover the phase o

h(n) when it is nonminimum phase. In the past decade, ma atsuoka and Ulrych [15] proposed a least squares algorithm

cumulant-based methods [1]-[5] have been reported dueﬂ%;t ﬁt'l:iﬁztaggr':pﬁgmam psheausdeo'_?:\)/rer?:et'ogft(;eﬁﬂn?w%'atrix
two common properties of cumulants. One is that not on P P 9 '

the amplitude but also phase bfn) can be recovered from . umerous Ieast_ squares meth(_)ds that make use of all phase
higher order(>3) cumulants ofz(n), and the other is that information of bispectrum or trispectrum af(.”) have been
cumulant-based methods are insensitive to additive GaussigRerted in the open literature in the past five years such as
noise because all higher order cumulants of Gaussian proce§98§e reported in [16]_[2_91' The_se least squares_met_hods are
are equal to zero. more robust to both additive noise and phase estlmatlon error
Phase estimation can be performed basically with three cahPolyspectra ofi(n) than those methods reported in [13] and

gories of cumulant-based methods. The first category includé4] Using partial phase information of polyspectradf,),
cumulant-based estimation methods [1]-[5] that simultanBut the former must compute the pseudo-inverse of a huge

matrix to solve forf(w). Recently, Li and Ding [21] proposed

a least squares method to estimatgw) without needing
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common issues are faced with these methods. One is thah&ve identified the parameters &fyp(z) by maximizing a
obtain an accurate estimate for the phase of polyspectrasafgle A/th-order cumulant ofy(n) instead of searching it
z(n) requires a quite large number of data because of largem thoseH sp(z) associated withs. This method not only
variance and low resolution of nonparametric polyspectrui® able to provide an accurate estimate fb{gp(z) including
estimation methods, and the other is the phase unwrappthg allpass factors (=) but also is less sensitive to additive
problem. On the other hand, not many 2-D polyspectru®aussian noise than MP-AP decomposition-based methods
phase-based methods [22]-[24] were reported because the tientioned above. To our knowledge, MP-AP decomposition-
common issues always lead to extraordinary complexity in thesed methods are never used for the identification of 2-D
design of phase-estimation methods. Dianat and Raghuve®r systems possibly because of difficulties in the theoretical
[22] use a Fourier series-based parametric model for batktension of 1-D methods or extraordinary complexity.
phase and magnitude of 1-D and 2-D non-Gaussian signalsThis paper proposes a parametric cumulant-based phase-
with the model parameters estimated from bispectra of daéstimation method that estimates the phase respgéseof
Kang et al. [23] proposed some recursive phase-estimatiehe unknown 1-D systenk(n) by processinge(n) with an
algorithms based on the recursive formulas reported in [18ptimum allpass filter such that a singléth-order (A > 3)
and [15] for both 1-D and 2-D cases. Their algorithms estimat@mulant of the allpass filter output is maximum in absolute
principal values of(w) from those of the bispectrum phase ofralue. The proposed method neither involves the amplitude
z(n). Takajo and Takahashi [24] also proposed a 2-D phasstimation ofi(n) as MP-AP decomposition-based methods
estimation algorithm that is an extension of the 1-D phas® nor involves the use of polyspectra phaser6i) as do
estimation algorithm reported in [19], whereas their algoritholyspectrum phase-based methods. Therefore, the proposed
is quite complicated with its complexity dominated by the 2method is less sensitive to additive Gaussian noise than most
D phase unwrapping part. The crucial phase unwrapping psP-AP decomposition-based methods because, as mentioned
of the phase-estimation algorithms reported in [22]-[24] mabove, the latter resort to correlation-based methods for ampli-
not work well, especially when signal-to-noise ratio (SNR) itude estimation. Moreover, the proposed method is free from
not sufficiently high or when magnitude of polyspectra of dathe phase unwrapping problem of polyspectrum phase-based
x(n) has nulls (due to zeros dif(z) on the unit bicircle), methods. Furthermore, the proposed method is also extended
in addition to the other common issue (large variance amal the case of 2-D system phase estimation.
low resolution) mentioned above. Moreover, to our knowledge, The organization of the paper is as follows. Section I
the performance analysis of both 1-D and 2-D polyspectrupnesents two parametric allpass models for the allpass fil-
phase-based methods is never reported except for limited including a well-known ARMA model and a Fourier
simulation results. series-based model. Section Il presents the new paramet-
Parametric MP-AP decomposition-based methods, whigie cumulant-based phase-estimation method, including one
are free from the phase unwrapping problem, make use of #igorithm for 1-D LTI systems and one algorithm for 2-D
decompositionH (z) = Hyp(z)-Hap(z), whereHyp(z) isa LTI systems using the allpass models presented in Section II.
minimum-phase system having the same amplitude spectrilifven, a performance analysis for the proposed 1-D and 2-D
with the unknown systenf (z), and Hap(z) is an allpass phase-estimation algorithms is presented in Section IV. Some
filter. The estimation ofHsp(z) (phase estimation) follows simulation results as well as experimental results with real
the estimation off\;p(z) (amplitude estimation), and existingspeech data are then presented to support the proposed 1-D
correlation-based methods are used to obtain an estimagel 2-D phase-estimation algorithms in Section V. Finally,
Hyp(z). Tugnait [6] searches for the desirddl(z) from a the paper concludes with a discussion and some conclusions.
finite setS of all the models spectrally equivalent fyp(z)
such that cumulant functions associated with the dedfiféd)
best match the associated sample cumulant functiongsof
Note that each member & is associated with an allpass For notational simplicity, the same notatiod$,(z) and
fiter Hap(z) = H(z)/Hwmp(z). Instead, Chi and Kung ¢,(w) are used in this section without confusion for the
[9], [10] processz(n) with the inverse filter1/ﬁ11\,1p(z) to transfer function and phase of parametric allpass models with
obtain a second-order “white proces&'n), which is further p parameters, respectively. Moreover, the frequency response
processed by each allpass filthiyp(z) (associated withs) —Of any LTI systemH (z) is simply denoted a#f (w) = H(z =
such that a single//th-order cumulant of the output, which¢’*). Two parametric allpass models, which will be used
is denotedy(n), of the optimumH,p(z) is maximum in for the phase estimation of 1-D and 2-D nonminimum phase
absolute value. Chi and Kung's and Tugnait's methods chh! Systems in the next section, are the well-known ARMA
be thought of as phase classification methods, whereas #fdel [25] and a Fourier series-based model [22], which are
former is computationally much more efficient than the lattePresented, respectively, as follows.
Two common disadvantages of these methods are as follows.
One is that allpass factors get lost in the estimatiof/of>(2) A. ARMA Allpass Model
e SOl frs nS e ot on phase b, S i knoun tat a eapn-rder 1.0 ARMA alpass e
based estimators offyp(2) are sensitive to additive noise. p(2) has the following transfer function [25]
Giannakis and Mendel [7] estimatEsp(z) using slices of —p A(1
the sixth-order cumulant function oi(n) through a quite Hy(z) = ZPA(T)
complicated procedure. Recently, Chi and Kung [11], [12] A(z)

Il. PARAMETRIC ALLPASS MODELS

(1)
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where A(z) is a pth-order polynomial of>~! with real where
coefficients, i.e.,

rl p2
At e @ Sl =Y D o sn(her + )
k=1l=—p2
It can be easily seen thdf,(w)| = 1 and that ifa is a P2 _
pole of H,(z) [i.e., a root of A(z)], then1/a must be a zero + Z ao, - sin (lwy),
of H,(z). When A(z) is minimum phase (i.e., all the roots =1
of A(z) are inside the unit circle)H,(z) is a causal stable —-r<w <w, —r<wy <7 (8)

allpass filter; whenA(z) is maximum phase (all the roots of _ _ . _
A(z) are outside the unit circle),,(z) is an anticausal stable Which is just a direct extension af,(w) given by (5) with
allpass filter. Note thaf,(z) cannot have zeros on the unit@ll the redundant terms removed. The 2-D parametric model
circle; otherwise, it becomes unstable. Moreover, whgriz)  ¥p1.p2(w1,w2) given by (8) can be used as an approximation
is causal (anticausal) stable, the inverse filtéH, () (which to an arbitrary 2-D phase respondgu,, w2) (of real 2-D LTI
is also an ARMA allpass filter) is anticausal (causal) stableSystems). .

Assume thatb(w) is the phase response of an arbitrary real AS mentioned above, both the ARMA allpass model and
allpass filter and tha®(w) is knowna priori. Then, one can Fourier series-based allpass model can be used to approximate

find an allpass filtetH,,(z) given by (1) such that a known phase functiod@(w) with model parameters solved
from &(w). However, when®(w) is not known, these two

emIer . A% (W) allpass models can still be used to approximéie), but
op(w) = arg {Hp(w)} = arg {T} (3) model parameters cannot be obtained frdfa) any longer.
In the next section, we present how these two models are used
by using IIR filter design techniques sucﬁor the phase estimate of an unknown LTI system with model

approximatesp X
hp ) parameters solved from higher order cumulants.

as Deczky’s nonlinear approximation method [25], [26].

B. Fourier Series-Based Allpass Model lll. PHASE ESTIMATION OF LTI

o o SYSTEMS BY ALLPASS FILTERING
Because the unwrapped phase of a real filter is a perlodch t us define the followi tati f f lat )
odd function with period equal t@r, one can model a 1-D  -&t US G€line the following notations for ease ot later use:

allpass filterH,(=) as n = (ny.m2)

Hp(w) = exp {jipp(w)} = exp{—jpp(-w)} (4 k= Ekb /f2))

W =(Wwi,w2

where = (21, 22)

= H(w) = H(z = (/% ¢/*?))
op(w) = Z ay, - sin (kw). (5) 0o - -
k=1 Z hk) = Z Z h(ky, ko)
k=—o00 k1 =—00 ky=—00

Note that the allpass model given by (4) and (5) is always T -
stable due tdH,(w)| = 1 for all w (i.e., the region of conver- / flw)dw = / Flwy,we) dwy dws.
gence ofH,(z) includes the unit circle). Remark that Dianat - -z

and Raghuveer [22] use the Fourier series-based model for

both phase and magnitude of non-Gaussian signals, Wheez24 ume thak(n) is the 2-D noisy output signal of an unknown

LTI systemh(n) driven by a 2-D non-Gaussian input

we use the Fourier series-based model for an allpass syst )
u(n) as follows:

It is easy to see that for any arbitrary phase functigw),
when z(n) =u(n) * h(n) + w(n)

oo

1 ™

o= [ Bw)singhe) do ©) = Y uB)hn-B+um. Q)
TS k:—OO

the seriesp,(w) given by (5) forp = oc is exactly the Fourier Let us make the following assumptions abaut), w(n) and

series expansion ob(w). It is known [27] thaty,(w) with  h(n):

aj, computed by (6) converges ®(w) asp — oo inthe A1) y(n) is real, zero-mean, independent identically dis-

mean-square-error (MSE) sense. _ _ tributed (i.i.d.) with Mth-order (M > 3) cumulant
Next, let us present a real 2-D Fourier series-based allpass v # 0.
model Hy, 4o(21, 22) motivated by the proposed 1-D Fourier a2y (5 is zero-mean Gaussian, which can be white or
series-based allpass model as follows [22]: colored with unknown statistics.
) A3) u(n) andw(n) are statistically independent.
Hp pa(wi,w2) = exp {jgp1 po(wi, w2)} A4) h(n) is a real stable LTI system that can be nonmin-

= exp {—jp1p2(—wi, —w2)} @) imum phase.
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It has been shown in [28] and [29] that th&th-order
cumulant function ofz(n), i.e., joint cumulant ofd/ random
variablesz(n),z(n + k1), - -, z(n + kar—1), is given by

Cr,z(k1, ko, kp—1)
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Then, we have
|Cf\4,y(07 ) 0)|

L N\2M-Y) 7r
AN R T —

O
=y Y. h(mh(n+k) - h(n+ky_1) (10)
n=-0o

and theMth-order polyspectrum of(n) (Fourier transform

of Carz(k1, k2, -+, kp—1)) is given by

. d(dl "'deW—l
1\ 2(M-1) T w
() hwl|[ [

JH(wy—1)| - [Hwr + - Fwpra)|

SA{:W(w17w27 te ,(d]w_l)
00 00 cexp {j(®(wy) + - + P(wrr—1)
= Z Z Cj\fyﬂf(klvk%"',kjw_l)

— (w1 + - Fwy—1)dwy - - dwar—1

1 2(M—1) w n
S — %Y ./ .../ Hw e
(o) bt [ [ o)

|H(wn-1)] - [H(w1 + -+ +wp-1)]

ky_1=—00

M-1
e {03 ot}
=1

=yuHw) -Hwy-—1)H (w1 + - +wy-_1). (11)

k1=—00

. . . cdwy - dwps—1. a7
Although the signal model given by (9) and the associated = ]
Mth-order cumulant function given by (10) and polyspectrum It is trivial to show that if
given by (11) are for the 2-D case, they also apply for the (W) = a-w’ (18)

1-D case withn, k, and w replaced by scalars, k, and w,

respectively. The parametric cumulant-based phase-estimatiga equality in (17) holds. What remains to be proven is that

method to be presented below is based on the followiige equality of (17) leads to (18).

theorem. Assume that®(w) is a continuous function of and that
Theorem 1:Assume thatz(n) was generated from (9) ¢(0) = 0 without loss of generality. It can be inferred from

under the assumption8l) through A4). Let y(n) be the (17) that the equality of (17) requires

output of an allpass filtetHap(w) = exp{jp(w)} with
input z(n). Then, the absolutd/th-order(}/ > 3) cumulant
|Crry(kr = 0,...,ky—1 = 0)] of y(n) is maximum if and
only if

o(w) = —8(w) + aw? 12)

wheref(w)

Moreover

Max {|Chr,y(k1 = 0, -+, k-1 = 0)

I}
_ (2&)” ol [ [t

|H(w1\4_1)| . |H(w1 +--- +(UJ\4_1)| dwy -+

d(d]w_l . (13)

Proof: It is easy to see thag(n) is the output of the
overall system
H(w)Har(w) = [H(w)|exp {j@(w)} (14)
where
P(w) = b(w) + ¢(w)-

One can easily infer, from (11) and (14), that

(15)

Sary(wi, - wap—1)
=yu - [H(wy)| - [H(wrr-1)]
JH(wi A+t war-r)]
-exp {j(®(w1) + -+ + P(wn—1)

- P(wy + - twy-1)} (16)

arg{H(w)} is the phase of the unknown syste
h(n), anda = (a1, az) is an unknown constant row vector.

(P(wl) + -4 (P(w]w_l) — (D((dl + - +w1\l—l)

=p+2rL, Vwi,wa--,wp-1 (19)

where —r < g < 7 is a constant and. is an integer.
Substitutingw, - = wpy—1 = 0 into (19) yields the

pfesult g + 2rL = (M —2)®(0) =0, or L = 0 and 8 = 0.

Thus, (19) is equivalent to

Qwi+ - Fwy_1) =0wi)+ -+ Pwn—1)  (20)

which implies tha®(w) is a linear function ofv or that (18) is
true. Therefore, we have completed the proof thay , (k1 =
0, ---,kp—1 = 0)] is maximum if and only if (12) holds.
Meanwhile, the equality of (17) leads to (13). Q.E.D.

Let us emphasize that Theorem 1 is also applicable for the
1-D case withn, k,w, and# replaced by scalars, k,w, and
7, respectively, and1/2r)2M~1) replaced by(1/2x)M~1)
in (13). Note that Theorem 1 reduces to the corresponding
theorem reported in [12] when the unknown syst&ffk) is
a 1-D allpass system.

Without confusion, let us use(n) to denote the given
measurements for both 1-D and 2-D cases. How the new
cumulant-based phase estimation method estimates the system
phasef(w) is shown in Fig. 1. Letz(n) pass through an
allpass modelH,(w) given by (1) or (4) (for the 1-D case)
or Hy1 2(w) given by (7) (for the 2-D case), and lgtn) be
the associated output. By Theorem 1, except for an unknown
linear phase term (an unknown time delay), the pltdsg of
the unknown systemh(n) can be estimated as

bw) = —p(w) (21)
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Gaugsian Hypp(@) = Hy(w)
NM?('ZE; or Hyp(@) = Hppo(®)
N _ O@) = (@)
u(n) LTI System + X x(n) Allpass Filter ——p
i |H(a))| ejH(m) L ]_IAP(m) — e]'(/’(w)
non-Gaussian ¥(n)
Y
MaX|m|ze
0
(M23)

Fig. 1. New cumulant-based phase estimation method.

where @(w) is the phase of the optimum allpass modekhere the computation af(n) and dy(n)/9a, depending on
obtained by maximizing the following objective function  the allpass model used, will be presented later. Next, let us
present the new phase-estimation method using the parametric

_ A 2
J(a) = [Crry(0; -+, 0)] (22) allpass models presented in Section Il for 1-D case and 2-D
wherea is a column vector containing all parameters of thease, respectively.
allpass model used, an@h; (0, - - -, 0), which is the sample

cumulant associated witlC'y; ,(0,---,0), can be directly A. 1-D Phase Estimation
calculated from the allpass model outpfte). For instance, = The new phase estimation method for the 1-D case using

for M = 3 either the ARMA allpass model given by (1) or the Fourier
series-based allpass model given by (4) is implemented by the
Cs,4(0,0) Zy (23)  following algorithm.
Algorithm 1.:
whereN is the total number of termg*(n) in the summation.  S1) Set p,.x (the maximum ofp), integer increment
Note thatJ(a) is a highly nonlinear function of. Therefore, parameters > 1, and convergence parametér(a
we have to resort to iterative optimization algorithms for small positive number). Choose the causal stable or
finding the optimuma. anticausal stable allpass mod&l,(z) given by (1)
A popular gradient-type iterative optimization algorithm (ARMA model) or that given by (4) (Fourier series-
is considered for finding the maximum of(a). At the ith based model).
iteration, a is updated by S2 Sett = 1 (iteration number)p = s, anda, =
fo (a1,az,---,a,)T, which contains all the coefficients
a(i) = a(i— 1)+ pg;, (24) of the allpass modelH,(~) used. Search for the
wherep is a positive constant, ang}_, denotes the gradient maximum of J(a,) by the above iterative algorithm
of J(a) with respect tag for a = a(i — 1), i.e., with the initial conditiona,(0) = 0,, where0, is a

p x 1 column vector containing zeros.

. (25) S3 Sett =¢+ 1,p = s-t. Search for the maximum of
a=a(i—1) (ap) by the above iterative algorithm witd,(0) =
However, a local maximum rather than a global maximum of ( @y, - 00T . . .
J(a) can be obtained as the algorithm converges. A choice forS4 I b < Puax and|J(a,) — J(a)-s)|/J(ap) 2 ¢, then
pis p=mn/2', where0 <1 < L is an integer, and <7 < 1 90 to S3; othenmse, Astop.. _
is a preassigned constant. If updatiiag) by (24) with! =0 The optimum phase estimatéw) is then obtained [see (21)]
results inJ(a(:)) < J(a(i—1)), one can repeat the process foRS
I=1,2,---, until J(a(s))> J(a(i — 1)). As to the gradient Aoy A A
g;_1. for instance, it can be easily shown [12] from (22), (23), O(w) = —arg {Hp(w)} = ~¢p(w).

and (25) that forM = 3 For ease of later usélgorithm 1is referred to a®\lgorithm

dJ(a)
da

9,1 =

(27)

R aCs ,(0,0) 1 ARMA-Causahnd Algorithm 1 ARMA-Anticausaihen the
gi—1 =2 C3,(0,0) - e ARMA allpass model chosen i81) is causal and anticausal,
a=0(i—1) respectivelyAlgorithm 1is referred to ag\lgorithm 1 Fourier
1 5 when the Fourier series-based allpass model is chosg&d)in
=2 N Zy Note that to compute/(a,) given by (22) and the gradient
dJ(ap)/0a, (see (26) for the casd/ = 3) in S2) and S3

requires computation of(n) anddy(n)/da,, which depend
(26) onthe allpass model chosenr). Next, let us discuss how to
a=a(i—1) computey(n) anddy(n)/da, for Algorithm 1 ARMA-Causal

oo (32)
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Algorithm 1 ARMA-Anticausabnd therAlgorithm 1 Fourier
respectively.

In association with Algorithm 1 ARMA-Causal and
Algorithm 1 ARMA-Anticausalhow to computey(n) and
Jy(n)/0a, has been reported in [12]. Basically, when a
causal stable allpass model is used, bgth) anddy(n)/da,
are obtained through a forward processing as follows:

k=1
~apz(n+k —p) (28) R4)
dy(n) _ L oy(n —
day, Zak 8am

On the other hand, when an anticausal stable allpass model is
used, they are obtained through a backward processing. Refer
to [12] for details.

Regarding the computation g{») anddy(n)/da, required
by S2 and S3 in Algorithm 1 Fourier the former can be
simply obtained either by computing(n) = x(n) * hy(n),
whereh,(n) is the inverse FFT of,,(w), or by taking inverse
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well by maximizing J(a,). The obtained optimum
anticausal ARMA allpass filter turns out to be the
inverse filter of the unknown allpass system. However,
the optimum allpass filter obtained by the proposed
1-D phase-estimation algorithm can be thought of
as an optimum phase equalizer to remove the phase
distortion of the unknown (nonminimum phase) LTI
system H(z), which itself can also be an allpass
system. In other words, Chi and Kung’s allpass system
identification algorithm is a special case Alfyjorithm

1 ARMA-Anticausawhen H(z) is an allpass system.
The proposed 1-D phase-estimation algorithm has a
computationally efficient parallel structure in com-
puting dy(n)/da,, [see (29) and (30)]. The parallel
structure associated withigorithm 1 ARMA-Causas
shown in Fig. 2(a), and that associated wAtlyorithm

1 Fourier is shown in Fig. 2(b). However, the latter
is computationally faster than the former because
dy(n)/da,, given by (30) is nothing but the output of
an FIR filter with only two nonzero coefficients A2
and—1/2) driven byy(n), whereas that given by (29)

is the output of gpth-order IIR filter 1/A(z) driven

by both z(n) and y(n).

FFT of Y(w) = X(w) - H,(w), and the latter can be simply
obtained by B. 2-D Phase Estimation:
dy(n) | The new phase estimation method for the 2-D case using
da,, 2 {y(n+m) —y(n—m)}, the proposed 2-D Fourier series-based allpass model given by
m=1,2--p (30) (7) is implemented by the following algorithm:
Algorithm 2:
The proof for the expression @fy(n)/da,, given by (30) is  S1) Setpl,p2, and leta be a column vector containing

given in Appendix A.

Some worthy remarks for the proposed 1-D phase estimations2)

algorithm are given as follows:

R1) The iterative search algorithm used 82) and S3
guarantees the increase dfia,) whenevera, is
updated. Moreover, fohlgorithm 1 ARMA-Causglor
ARMA-Anticausg| the obtained allpass mod, (z)
in S2) andS3 must also be causal stable (or antlcausal
stable) as chosen i81) in addition to the increase

all the coefficients otppl 2(w) given by (8).
Search for the maximum of (a) by the the above
iterative algorithm with the initial conditioa(0) = 0.

The optimum phase estimaﬁ;‘w) is again obtained [see
(21)] as

A~

f(w) = —arg {leyﬂ(w)} = —@p1 p2(w). (31)

Moreover, the computation af{n) anddy(n)/da required by

of J(a,). On the other handJ(a,) is bounded S2), is basically the same as that associated wWitjorithm 1

because|Cyy (0, - --,0)| is bounded by Theorem

[see (13)]. Therefore the convergence of the proposedy y(n)
a5

1-D phase-estimation algorithm is guaranteed, but as
with other nonlinear optimization algorithms, it may
converge to a local optimum solution.
The numberp of the allpass model parameters ihere.
increased by for each iteration (eact). Two reasons
for this are as follows. From our experienc&igo-
rithm 1 often converges faster fer> 1 than fors = 1
with almost the same performance if the associated
maximum values/(a,) are close to each other. The
other reason is that the desired optimum solution can
be chosen according to the resultdié,) from a set

of solutions obtained byAlgorithm 1 with different
values ofs and in order to avoid some local optimum
solutions.

Chi and Kung [12] proposed a cumulant-based all-
pass system identification algorithm that estimates the
phase of an unknown causal stable allpass system as

R2)

R5)

R3)

1 Fourier with the partial derivativedy(n)/da.,s given by

= §{y(n1 +r,ne+8)—ylng —r,ne—s)k. (32)

The proof for (32) is similar to that for (30) and thus is omitted

There are also some worthy remarks regarditgprithm 2
described as follows:

Algorithm 2 can be viewed as an extension Af-
gorithm 1 Fourier for the 2-D case, whereas the
2-D version ofAlgorithm 1 ARMA-Causabr (ARMA-
Anticausa) is not suggested due to complexity for
computing the gradien®.J(a)/da and lack of effi-
cient approaches to avoid instability of 2-D ARMA
allpass models. The statements describedRi,
R3) and R4) associated withAlgorithm 1also apply
to Algorithm 2 In summary, the convergence of
Algorithm 2is guaranteedilgorithm 2is an optimum
phase equalizer to remove the phase distortion of
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Fig. 2. Parallel structure for computing the gradient/¢f, ) associated with (ajlgorithm 1 ARMA-Causadnd (b)Algorithm 1 Fourier respectively.

the unknown (nonminimum phase) LTI systdifi{z),

with only two nonzero coefficientsl{2 and —1/2)
which itself can be an allpass system|gorithm

[see (32)] driven byy(n).
2 has a parallel structure for efficiently computing R6) Note that 2-D LTI systems are generally nonsepa-

dy(n)/da, s, which is also the output of an FIR filter rable. The total number of unknown coefficients in
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¢p1p2(w) given by (8) is to the estimateddyp(z). Finally, the proposed 1-
D and 2-D phase-estimation algorithms are neither
Poum = pl-(2-p2 +1) 4 p2. (33) linear estimators nor simple recursive estimators such

as those reported in [14]-[16] and thus require larger
computational load than most linear or recursive es-
H(z) = Hi(x1) - Hy(22) (34) timators.

If it is known a priori that H(z) is separable, i.e.,

which implies
IV. PERFORMANCE ANALYSIS
O(w) = 61 (wy1) + O2(wo) (35) In this section, let us present a performance analysis for the
proposed cumulant-based phase-estimation algoriéige-
where 61 (w) and 6»(w) are the phase of the 1-Drithm 1 (ARMA-Causal, ARMA-Anticausahd Fourier) used
systemsH;(z) and Hx(z), respectively,p,1 2(w) for the 1-D case. The performance analysis associated with

given by (8) can be reduced to Algorithm 1 basically applies taAlgorithm 2 as well because
they were developed based on the same philosophy except that
the latter is used for the 2-D case.
PrLp2(@ Z ax,0 - sin (kwi) + Z ao, - sin (lwz), It is known [25] that the phase [given by (3)] of the ARMA

allpass modeH,,(z) used byAlgorithm 1 ARMA-Causaind
Algorithm 1 ARMA-Anticausals continuous, whereas the

Then, Algorithm 1 Fouriercan be employed to esti- 970up delay
matef(w) with minor modifications for considerable

—r<w <, —7r§w2§7r. (36)

computational saving because grd{Hp(w)} = —O(arg {Hp(w)})/0w >0
_ for all w when H,(z) is causal stable, and gfdi,(«)} <0
Poum = pl 2 1.(2.-p241 2 AN ; . p
plp2<pl-(Z-p2+D+p for all w whenH () is anticausal stable. It is also known that
as computed using (33) for this case. the phase of the Fourier series-based allpass model [see (5)]

R7) The computation of,; ,2(w) given by (8) can also be used byAlgorithm 1 Fourieris continuous [27]. Moreover, the
performed by FFT algorithms because one can forabsolutelth-order cumulan{Ciyy (0, -- -, 0)| of the allpass
a 2-D signal froma,. ; such thaty,; ,»(w) becomes filter outputy(n) is invariant for either ofy(n) [or z(n)] and
the imaginary part of the 2-D Fourier transform of-y(n) [or —z(n)], i.e.,|Cas,4(0, - --,0)| is invariant for either

the 2-D signal. of H(z) and—H(x), buty,(w =0) =00rH,(» =1) = 1no
Let us conclude this section with the followingmatter which allpass model is used Ajgorithm 1 Therefore,
remark, which summarizes major distinctions of thélgorithm 1, which tries to maximizgC, (0, --,0)| [see

proposed 1-D and 2-D phase-estimation algorithn{82)], has the following property:
and polyspectrum phase-based methods as well a®1) The optimum phase estimaéﬁw) given by (27) is

MP-AP decomposition-based methods. continuous, although the true system phéise) itself
R8) Algorithms 1land2, which estimate the system phase can have discontinuities; meanwhilw) is blind to
[see (27) and (31)] by maximizing a single absolute a constantr whenf(w = 0) =

Mth-order cumulant of the used allpass model output Let ¢(w) denote the phase-estimation error associated with
y(n) or y(n) with no need to perform amplitude Algorithm 1 i.e.,

estimation of the unknown systef(n) or h(n), as

well as MP-AP decomposition-based methods are free e(w) = B(w) — Bw) = B(w) + Pp(w) (37)
from the phase unwrapping problem of polyspectrum-

based methods since the linear relationship betwemere% is the phase of the optimum allpass filter obtained

the system phase and polyspectra phase of m%?/ Algorlthm 1 Note thate(w) is also the phase of the overall
surementsz(n) or xz(n) is never involved. More- stemH ()i, (=): therefore¢(w) is equal tob(w) given by
over, they are less sensitive to additive Gaussn?ﬁ{S) Wlthw replace d byw and p(w) replaced byg,(w)

p(w).

noise than most MP-AP decomposition-based met )
ods when SNR is low because the latter resort to It can be easily inferred by (16) that the optimudth-order

the correlations of:(n) or z(n) (sum of correlations polyspectrumdiag,, (wy, - -+, war—1) of the outputy(n) of the
of noise-free measurements and those of addltl\%’t'mum allpass filtet] p(2) is given by

noise) for amplitude estimation df(n) or h(n), as

mentioned in the introduction section. On the other Sam,y(w1, -+ wam—1) =|Sm (w1, - wn—-1)]

hand, wherH\ip(z) can be accurately estimated, MP- cexp {j€(w1, -, wnm—1)}  (38)
AP decomposition-based methods can perform better
than the proposed cumulant-based phase-estimatigfere
method. For instance, when SNR is high, an accurate
estimate for the minimum-phase systéfip(z) can S
be obtained by correlation-based methods, thus lead- Sy (@, war-1)|

ing to an accurate estimate fdf(z) obtained from = |yl - [H(w)| - - [H(wnr—1)|

the finite set of all the models spectrally equivalent JH(wr 4 -+ wpr—1)| (39)
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and P2) The phase estimaté(w) is a weighted least squares
(WLS) estimate [30] by minimizing squares of

Ewy, wy—1) =e(wy) + - +e(wy—1) polyspectrum phase residué(wl,---,wM_;_L) with

_ L Y 40 absolute}/ th-order polyspectrum af(n) (which also

clort - Fwa-1) (40) equals absolutd/th-order polyspectrum af(n)) as

As mentioned inR3), the optimum allpass filter obtained by the weighting function.

Algorithm 1is an optimum phase equalizer that implies that When H(z) is a”h aIIpassf system, i.e. JSJg y(‘zlsv
e(w)and&(wy, - - -, war—1) can be thought of as phase residual de 1t)| = |vml, the cost functionF given by (43)
and Mth—orderA polyspectrum phase residual of the over uces to . .

systemH (z) - Hp(z), respectively. Moreover, thé/th-order 7:=|’VM|/ / E2(wi, - waget) dwr - dwrs_1
polyspectrum phase residu&(wy,---,wp—1) = 0 when —r —r

e(w) = aw, i.e.,&(wy, -, wp—1) is blind to any linear phase B T T
term in ¢(w). Therefore, without loss of generality, let us e _W"' _W[e(w1)+ ot elwn-1)
assume that the unknown linear phase terma(in) has been

—elwr + -+ wy—1)P dwy - dwpr_y
removed in the following performance analysis.

BecauseSy; (w1, -, wyp—1) is the (M — 1)-D Fourier = |va]| / / (w1) e (wpo1)
transform of the real Mth-order cumulant function -7 -7
CA47y(kl7 . If]\l—l) of y(n) +e (wl + -+ Cij_l)] dwy -+ dwpr—1
. =M. . e 2 dwr - dwnr_
Sl\f,y(wla"'awl\f—l):SJ\Ly(_wla"'a_wl\l—l) |’7M| /_7T /_WG (wl) w1 WM —1
(Hermitian), and thus, th&/th-order cumulan€yy,, (0, - - -, 0) =M@eo)Y ) [ (w)dw (44)

-7

can be expressed as
where we have used the following results in the derivation of

CJ\I y o 7 (44)
J\l 1 T T
< / / Suy(wi, -, wpm—1) / / e(wi)e(w;) dwy -+~ dwar-1
- duyg—y _ (27r)M_3{ / " W) dw}2 —0, foralli#;
M-1 . ?
< /_7T /_77|Sl\ly Wi, wh—1)] and
E( —1))dwy - dwpr— 41 4 4
COS( Wi,y Wa 1)) Wi+ Whr—1 ( ) / .. / e(wi)e(wl 4.4 wM_l) dwi - dwpr—1
which further leads to the simplification ¢€x;,,(0,---,0)] - -
(maximized byAlgorithm 1) as follows: / / e(w;) {/ e{wy +---+wM_1)dwj}
|CJ\4,y(07"'70)| dwl 1dwj+1 ~dwpr— 1 —0 for a”J#L
1\ M-t ™ ™ since e(w) given by (37) is an odd function (i.eg(w) =
= <%> : / / |Sar,y (w1, wy—1)| —e(—w)). The cost functionF given by (44) implies the
0T following property of Algorithm 1
- cos (E(wy, -, wpr—1)) dwy -+ - dwpg—1 P3) When the unknown systeri(z) is an allpass sys-

Mot tem, the phase estimatéw) is a least squares (LS)
1 T T g estimate by minimizing squares of the overall system
< ) ' /_77"'/_77| My, W) phase residuat(w).
Next, let us turn back to the case thHtz) is an arbitrary
(42) system. It can be shown that the cost functidngiven
by (43) satisfies the following inequality:

to the second-order Taylor series approximation assum- ) Q )
ing that [E(wr, -+, wy—1)| < 1. Therefore, maximizing 7 <|ya|-M~- {/ |H (w)] dw}

1
. {1 - 552(%7 . '7WM—1)} dwy - dwpr—1

|Cary(0,---,0)| given by (42) is equivalent to minimizing

. ; ™ - M-3 T
the following cost function: {/ |H(w)|dw} {/ |H(w)|-e*(w) dw}. (45)

F = / / |Sa (w1, s war—1) The proof for (45) is given in Appendix B. Note that the
— — inequality of (45) qualitatively implies (rather than rigorously
CEwy, e wa—1) dwr o dwpg—g (43) proves) the following property oflgorithm 1
P4) The smaller/™ |H(w)|e*(w)dw (weighted squares
which implies the following property oAlgorithm 1 of e(w)), the smaller the cost functiotF will be.
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Therefore, it can be predicted that as any WLS esth. 1-D Phase Estimation
mator [30], the absolute phase estimation efeo)| The first simulation example is a performance test on

associated wittAlgorithm 1is smaller (larger) when ajqorithm 1, and the second simulation example is a 1-D LTI

the weight| H(w)| is larger (smaller). This is consis-gystem having a pair of zeros on the unit circle. Let us turn

tent with the fact that largefH (w)| leads to higher J Example 1.

SNR for the frequency componentin dataz(n) and,  gxample 1—Performance Testhe noise-free data were

therefore, leads to smallge(w)|. generated by letting a zero-mean, exponentially distributed
Let us discuss a limiting case of smallgif (w)| leading jid. random sequence(n) with variance o2 = 1 and

to larger phase-estimation error as mentione®4) Assume skewnessy; = 2 input to a nonminimum phase ARMA(3,
that H(z) has a pair of zerog*/“ on the unit circle, i.e., 2) LTI system with transfer function

|H(£wo)| = 0, which results in a pair of discontinuities
of magnitude equal tor in the true system phasgw) for H(z) = 1-295271 41,9277 (46)
w = twyp. Therefore, it is impossible to recover the system ) 1-1.32714+1.05272 - 0.322—3

phase forw = +wq simply because:(n) does not carry any

phase information about = +wy. In other words, the phaselocated 20.95 :
. : : 10.95 and2. Magnitude responsgf (w)| of the sys-
estimates obtained b&lgorithm 1always show larger phase-tem is shown in Fig. 3(a). Then, the noisy data) of length

estimation error in the vicinity of discontinuities of the true

) . N = 1024 were obtained by adding a colored Gaussian noise
system phasé(w). Therefore Algorithm 1has the following sequence, which was gen()a/rated f?om the output of a second-

property: i o order highpass FIR filter with coefficien{d, —2.333, 0.667}
P5) When the system phase has discontinuities due §@yven by a white Gaussian noise sequence, to the noise-free
Zeros on the unit circle, the_absolut_e_phase-egtlmatlagta for SNR= 10 dB. The cumulant order used WA — 3.
error |e(w)| is always large in the vicinity of discon- Thjrty independent runs were performed usiatgorithm 1
tinuities even if SNR= oco. ARMA-Causaland ARMA-Anticausalwith p,... = 5 and
Next, let us discuss the consistency propertyAtgorithm s = 5 and Algorithm 1 Fourierwith pu.. = 4 ands = 4,
1. Assume thatH(z) does not have any zeros on the uniespectively, and the obtained 30 phase estimates of the system
circle (i.e., the system phaggw) is continuous for all). It were plotted in an overlaid fashion to indicate the variability
is well known [27] that the periodic continuous system phasg Algorithm 1
can be expressed as a Fourier series (as given by (5) and (8ig. 3(b)—(d) shows 30 continuous phase estimates obtained
for p — oc) with uniform convergence. Moreover, it is knownpy Algorithm 1 ARMA-Causal, Algorithm 1 ARMA-Anticausal
that the continuous system phase can also be modeled bydhRe Algorithm 1 Fourier respectively, with unknown lin-
phase of an ARMA allpass filter given by (1) of sufficienear phase factors artificially removed as well as constant
orderp except for a constant group delay [25]. Moreover, thg artificially compensated (sincé(w = 0) = 7 due to
sample cumulan€y;,, (0, - - -,0) is known to be a consistent H(z = 1) = —0.1163 < 0) [seeP1)]. The respective averages
estimate ofCy;,,(0, - -+, 0) [3]. The above discussion leads toof the 30 phase estimates associated with Fig. 3(b)—(d) are
the following property ofAlgorithm 1 depicted by a dashed line, a dash-dot line, and a dotted line,
P6) Assume that (=) does not have any zeros on the unitespectively, in Fig. 3(e), together with the true continuous
circle. The phase estima&w) [which is continuous Phase (solid line). One can observe from these figures that
as mentioned irP1)] is a consistent estimate excepimean and standard deviation of the phase estimates obtained
for a linear phase term gs — ~o. In other words, by the proposed 1-D phase estimation algorithm are smaller for
if the continuous system phagw) can be exactly those frequencies where the magnitude response of the system
modeled as either of (3) or (5) for a finife= p’, the [shown in Fig. 3(a)] is larger. This is consistent witi) and
obtained phase estimate with> p’ is a consistent P4). This is particularly manifest in the vicinity af = 1.08,
estimate except for a linear phase term. where |H(w)| is maximum, and in the vicinity o, = 0,
As mentioned above, the properti4)—P6) also apply to where|H(w)| is quite small. Moreover, a considerable phase
Algorithm 2 for the 2-D case since botAlgorithms 1and €Stimation errorie(w)| for 0 < w <0.5 can be observed in
2 were developed based on the same philosophy. Next, fdg- 3(e) (dash-dot line and dot_ted line) because the magnitude
us present some simulation results and experimental restii§Pons§ (w)| for 0 < w < 0.5 is much smaller than that for
to support the proposed cumulant based 1-D and 2-D phale> < « < [see Fig. 3(a)]. The simulation results shown in

estimation algorithms and the performance analysis presenfdd 3(b) (which is associated witigorithm 1 ARMA-Causgl
in this section. are slightly better than those shown in Fig. 3(d) (which is

associated withAlgorithm 1 Fourie), which are also slightly

better than those shown in Fig. 3(c) (which is associated with

Algorithm 1 ARMA-Anticausalaccording to their respective
The simulation results to be presented for 1-D phase ediias and variance. Nevertheless, the simulation results shown

mation using the proposedlgorithm linclude two examples in Fig. 3(b)—(e) demonstrate that the proposed 1-D phase

(Examples 1 and 2). Then, some experimental results with reatimation algorithm can be used to estimate the system phase

speech data usingjlgorithm 1are presented in Example 3. Forof 1-D LTI systems.

2-D phase estimation, two examples (Examples 4 and 5) using=xample 2—System Phase with Discontinuitiégis ex-

the proposedilgorithm 2 are presented. Next, let us turn teample examines the performance of the proposed 1-D phase

the three examples for 1-D phase estimation. estimation algorithm when the system phase has a pair of

whose poles are located @t5 and 0.4 £+ 0.7 and zeros are

V. SIMULATION AND EXPERIMENTAL RESULTS
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Fig. 3. 1-D simulation results fok = 3 (cumulant order), SNR= 10 dB andN = 1024 associated with Example 1. (a) Amplitude respopéw)| of
the system; 30continuous phase estim#fes) obtained by (b)Algorithm 1 ARMA-CausaWith pmax = 5 ands = 5, (c) Algorithm 1 ARMA-Anticausal
also with pmax = 5 ands = 5, and (d) Algorithm 1 Fourierwith pmax = 4 and s = 4, respectively.

discontinuities of magnitude equal te in the frequency the system phasé(w) with py. = 15, M =3 or M = 4
interval (—,7) due to a pair of complex conjugate zerosnds = 1 or s = 5. Then, the optimumd(w) was chosen
on the unit circle. A nonminimum phase system ARMA(3,4rom the obtained solutions associated wite= 1 ands = 5

with transfer function as mentioned irR2).
1—3.427"1 1481272 — 3.6042~3 + 1.172—4 For comparison, an MP-AP decomposition-based method
H(z)= was also used to estima#w) with the same simulation

_ —1 mon ,—2 =, —3
1-1927" + 1.15252 0.16252 47) data. In the first step of the MP-AP decomposition-based

method, the minimum-phadéwr(z) = B(z)/A(z) (which is
was used that has poles located0at and 0.85 + 0.3 and an ARMA(3,4) model) was estimated using the least squares
zeros located at.3,0.9, and 0.6 + j0.8 (= ¢t70-92%7), The modified Yule-Walker equations (LSMYWE) [31], [32] for
magnitude response of the system is shown in Fig. 4(a) fréghe AR parameters and Durbin’s method [31], [33] for the
which a spectral null atv = 0.9237 can be seen. The MA parameters. The modified Yule-Walker equations (i.e.,
simulation data were generated (fof = 1024 and 4096, linear equations relating the autocorrelation functiqn (k)
SNR = oo and 5 dB) following the same procedure a0 AR parameters) fok = 5,6,---,16 were used to obtain
described in Example 1, except that only a single realizatiot(z), and then,z(n) was processed by the systed{z) to
of measurements(n) was generated with measurement noisgbtain the MA(4) process(n). Then,v(n) was processed to
assumed to be white Gaussian. Thédgorithm 1 ARMA- obtain an AR modeld’(z) of order equal toL = 100 using
Causaland Algorithm 1 Fourierwere employed to estimateBurg’'s method [31], [34], and§(z) was obtained using the
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Fig. 3 (continued). 1-D simulation results féf = 3 (cumulant order), SNR= 10 dB and/N = 1024 associated with Example 1. (e) Respective averages
of the 30 estimates shown in parts (b)-(d) (dashed line, dash-dot line, and dotted line) together with the true systé(w plissid line).

autocorrelation method [31], [35] with1l,d/(1),---,a'(L)} R8) becauseHyr(z) was not accurately estimated though
(coefficients of A'(z)) as the data. In the second step 0BNR = oc. The reason for this is as follows. The power
the MP-AP decomposition-based method, Chi and Kungspectrum ofz(n) is equal to zero fow = +0.9237 due to the
cumulant-based allpass filter classification method [9], [1@ksociated pair of zeros &f(z) on the unit circle, and thus, the
was used to determine the optimubip(z) associated with estimation of the minimum phasiyp(z) (without zeros on
the set of all the ARMA(3, 4) models spectrally equivalerthe unit circle) is never perfect even if SNR occ. Globally
to .E[]\,H’)(Z). Finally, the optimumé(w) was obtained as the speaking, these simulation results support that the proposed
phase ofH(z) = Hyp(z)Hap(2). 1-D phase estimation algorithm can be used to estimate the
The simulation results are shown in Fig. 4(b)—(d). Boe= phase of 1-D LTI systems, regardless of whether or not there
1024,SNR = oo, the obtained continuous phase estimaté@e zeros on the unit circle.
f(w) associated withAlgorithm 1 ARMA-Causa(short dash ~ Let us conclude this example with more simulation results,
line for M = 3 and long dash line fod/ = 4) and those asso- Which were obtained with the same simulation data through
ciated withAlgorithm 1 Fourier(short dash-dot line fot/ =3 amplitude equalization followed by phase estimation. The
and long dash-dot lind/ = 4) together with the true systemdataz(n) were preprocessed by the inverse filtgfly, (),
phased(w) (solid line) are shown in Fig. 4(b), where unknowrwhere Hyip(2) was the one obtained by the above MP-
linear phase factors were artificially removed, and constantAP decomposition-based method, and thus, the inverse filter
was artificially compensated due fw = 0) = 7 [seeP1)]. output, which is denoteﬂ’(n)A, can be thought of as the output
The phase estimate obtained by the MP-AP decompositia¥f-the overall systend (z)/Hwp(z) driven by an i.i.d. non-
based method is also shown in Fig. 4(b) by a dotted linGaussian input(n). Then, Algorithm 1 ARMA-CausaWwith
Fig. 4(c) and (d) shows the results corresponding to thopgax = 15, M = 3,s = 1, or s = 15 was employed to process
shown in Fig. 4(b) for SNR= 5 dB, whereasV = 1024 for z'(n) to obtaln a phase estlma&Qw) of H(z )/HMp( ), and
the former, andV = 4096 for the latter. One can see, fromthe phase estima#{w) of H(z) was obtained by adding the
Fig. 4(b)—(d), thatAlgorithm 1performs better for largeV or phase offfyp(z) to ¢(w). The obtained phase estimatés.)
higher SNR, and it also performs better for smallérbecause (short dash line forV. = 1024, SNR = oc, long dash line
the variance of sample cumulants is larger for larger cumulgfot N = 1024, SNR = 5 dB, and long dash-dot line for
order [3]. As predicted [seB4) andP5)], the phase estimation N = 4096, SNR = 5 dB) are shown in Fig. 4(e) together with
error associated witllgorithm 1is smaller for allw, where the true system phasfw) (solid line). Again, one can see
6(w) is continuous with largefH (w)|, and it is large for those from Fig. 4(e) tha®lgorithm 1performs better for largeV or
frequencies in the vicinity of the phase discontinuitywat= higher SNR and that these phase estimates are also consistent
0.9237. On the other hand, the phase estimates [dotted lineswith the predicted propertieB4) and P5) as well. Note that
Fig. 4(c) and (d)] associated with the MP-AP decompositioimaccurate estimation oHyp(z) for the case of SNR= 5
based method obviously are not good approximatior®@f dB, which leads to inaccurate phase estimates [dotted lines in
for SNR = 5 dB (low SNR) as mentioned iR8). However, Fig. 4(c) and (d)] associated with the MP-AP decomposition-
one can see from Fig. 4(b) that even for the case of SNk, based method, still ends up with good phase estimates [long
the performance of the MP-AP decomposition-based methoddissh line and long dash-dot line in Fig. 4(e)] associated with
not better than that oAlgorithm 1 This is also consistent with the proposed 1-D phase estimation algorithm. This implies
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Fig. 4. 1-D simulation results associated with Example 2 obtaineAdlggrithm 1 ARMA-CausalAlgorithm 1 Fourierand an MP-AP decomposition-based

method for a nonminimum phase system with a pair of zeros on the unit circle. (a) Amplitude re§fqnsg of the system. (b) Phase estimaé{s))

for N = 1024 and SNR= oo associated withAlgorithm 1 ARMA-Causa(short dash line ford = 3 and long dash line foil/ = 4), Algorithm 1
Fourier (short dash-dot line for/ = 3 and long dash-dot line fof/ = 4), and the MP-AP decomposition-based method (dotted line), together with
the true system phas#&(w) (solid line). (c) Phase est|mat69$w) correspondmg to (b) fotv = 1024 and SNR= 5 dB. (d) Phase estlmateff{w)
corresponding to (b) fotvV = 4096 and SNR= 5 dB. (e) Phase estlmate%w) for M =3 (short dash line forN' = 1024 and SNR= oo, long
dash line forN = 1024 and SNR= 5 dB, and long dash-dot line faV = 4096 and SNR= 5 dB) obtained by processing amplitude equalized data
with Algorithm 1 ARMA-Causatogether with the true system phagév) (solid line).

that the proposed 1-D phase estimation algorithm is robustpgbase characteristics associated with the data to be processed.
the preprocessing of amplitude equalization. Moreover, thelsepractice, it may be unknown that higher SNR and simpler
simulation results also indicate similar performance of the prphase characteristics are associated with ddtg) without
posed 1-D phase estimation algorithm, regardless of whetlpeeprocessing or associated with amplitude equalized data
dataz(n) or amplitude equalized data (n) were processed z’(n). Therefore, whether preprocessing of the given data can
for this example. Let us emphasize that the performance of ingrove the performance of the proposed phase estimation
proposed 1-D phase estimation algorithm depends on SNR atgbrithms needs further study.
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Fig. 5. Experimental results with real speech data fér= 4 associated with Example 3. (a) Windowed speech data (by Hamming window) of sound
/a: / uttered by a man (sampling rate equal to 8k Hz). (b) Predictive deconvolved speech igighabbtained by a correlation-based 12th-order LPE
filter (obtained by Burg's algorithm). (c) Deconvolved sigrigln) obtained by the deconvolution filtefinv (w) given by (48). (d) Impulse response

of the estimated vocal tract filter.

Example 3—Experimental Results with Real Speech Dataussian) impulse train for voiced speech and a white noise
It is known [36] that a speech signal can be modeled as (8gquence for unvoiced speech. In this example, a set of real
whereh(n) is the vocal tract filter (possibly with nonminimumvoiced speech data from a sound: / uttered by a man
phase), and the driving input(n) is a pseudo-periodic (non- was obtained through a 16-bit A/D converter with a sampling
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Fig. 6. 2-D simulation results fak/ = 3 associated with Example 4 obtained Algorithm 2with p1 = p2 = 3 (Paum = 24) for a separable 2-D system
with continuous phase response. (a) Amplitude resphHge, w2 )| of the system. (b) Phase respomge’;,w2) of the system; phase estimatgs.,w2)
for (c) N = 64 x 64 and SNR= 5 dB. (d) N = 64 x 64 and SNR= co. (e) NV = 128 x 128 and SNR= 5 dB.

frequency of 8 kHz. Then, the speech data were premultiplipériodic impulse train with some phase distortion because only
by a Hamming window for further processing. Next, leamplitude response of the vocal tract filter can be equalized
us present some experimental results with the windowég the minimum-phase LPE filte¥ (w), and the vocal tract
data. filter is not minimum-phase for this case. This implies that
The experimental results are shown in Fig. 5. The windowguhase estimation of the vocal tract filter is needed. With the
speech data shown in Fig. 5(a) were processed by a 12th-ond@rdowed data shown in Fig. 5(a), the propogddorithm 1
minimum-phase linear prediction error (LPE) filter—denoteARMA-Anticausalith p,,.x = 11, s = 1 and cumulant order
V(w)—obtained by Burg’s algorithm [31] to get the predictive = 4 was employed to obtain a phase estin’é(lze) of the
deconvolved signak(n), which is shown in Fig. 5(b). It can vocal tract filter. Then, the windowed data shown in Fig. 5(a)
be seen, from Fig. 5(b), thai(n) approximates a pseudo-were processed by a deconvolution filter (corresponding to an
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Fig. 6 (continued). 2-D simulation results faf = 3 associated with Example 4 obtained Algorithm 2with p1 = p2 = 3(Pyum = 24) for a separable
2-D system with continuous phase response. (g) Phase estimationegrrar.2) associated with (f).

inverse filter of the vocal tract filter) given by
A —1 -2
Hoxv(w) = [V (@)l exp {=j(w)} (48)  Hlzz)=1-0827 0.2
+ 18251 — 144z 25t +0.3627 225
to get the estimaté(n), which is shown in Fig. 5(c). One can — 05257 + 0427 1257 — 0.1z 25
see, from Fig. 5(b) and (c), thé(n) approximates a pseudo- +0.525% — 0427 25 % + 0,127 %25
periodic impulse train much better thafin) with the phase —(1- 0.8;:1_1 + 0'221_2)

distortion considerably removed by the deconvolution filter
Hinv(w) and that the pitch period can be easily found to
be 70 samples (i.e., 8.75 ms) from the two most significant
impulses in Fig. 5(c). These results justify that the propos#s used in the simulation. Magnitude respoh&éw; , w-)|
Algorithm 1 ARMA-Anticausgirovides a good phase estimat@nd phase respongéw; ,w2) are shown in Fig. 6(a) and (b),
of the vocal tract filter and that the LPE filter provides #&espectively, where
good inverse amplitude estimate of the vocal tract filter; thus,
H(w) = 1/Hinv(w) is a good estimate for the the vocal O(wy,ws) = arg { H(wy,wo)} + aqwi + aows (50)
tract filter. The estimated vocal tract filtér(n) is shown
in Fig. 5(d), which shows considerable resemblance to thgs plotted witha; = 0 and s = 1 to eliminate linear
windowed data [which is shown in Fig. 5(a)] of one pitcthhase factors. Again, a zero-mean exponentially distributed
period and the length of the vocal tract filter approximately; d. random fieldu(m,n) with variances2 = 1 and skewness
equal to two pitch periods. These experimental results alsg — 2 was convolved withh(m, n) to obtain the noise-free
support the feasibility of collaboration of the proposed phaggnthetic dataSNR = o) to which white Gaussian noise
estimation method and amplitude estimation methods. was added to form the synthetic data for SNR5 dB. As
We also performed the same experiment with other speggantioned irR6), when it is knowna priori that the system is
data, which led to the same conclusions as drawn from F'g-sréparable, the 2-D Fourier series-based phase model given by
although these. experlmental results were not included hgg; reduces to the sum of two 1-D Fourier series-based phase
due to space limitations. models as given by (5). However, in this exampMgorithm
2with M = 3 andpl = p2 = 3 was employed to estimate the
o system phase, assuming that the separability of the system was
B. 2-D Phase Estimation not knowna priori. Thus, the total number of coefficients used
Let us present two simulation examples (Examples 4 andrthe 2-D Fourier series-based allpass model Was, = 24
below) to demonstrate the efficacydtgorithm 2for the phase for this case. .
estimation of 2-D LTI systems. Example 4 is for a separable 2-The obtained continuous phase estima&s;,w,) for
D LTI system with continuous phase, and Example 5 is for th¥ = 64 x 64 are shown in Fig. 6(c) and 6(d) for SNR 5
case that the system phase has discontinuities in the donf@h and oo, respectively. The results foN = 128 x 128
{(w1,w2),0 < w1 < 27,0 < wy < 27}, In each of the two corresponding to those shown in Fig. 6(c) and (d) are shown
examples, the unknown linear phase term in the phase estiniat&ig. 6(e) and (f) (SNR= 5 dB andoc), respectively. One
é(wl,wQ) was artificially removed for ease of comparison witlcan see, from Fig. 6(b)—(f), that{w;,w:) approximates the
the true system phas¥w;, w>). Next, let us turn to Example true continuous system phagéw:,w-) better for largerV
4, and SNR. Moreover, Fig. 6(g) shows the phase estimation
Example 4—Separable 2-D System with Continuous Phaseror ¢(w;,w>) associated with the phase estiméfer, w-)
A 2-D MA systemh(m,n) with a separable transfer functionshown in Fig. 6(f)(N = 128 x 128 and SNR= oc). From

(1418251 — 05272 4 0.525°) (49)
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Fig. 7. 2-D simulation results fol = 3 associated with Example 5 obtained Aigorithm 2with p1 = p2 = 5 (P.um = 60) for a nonseparable 2-D
system with discontinuities in phase response. (a) Amplitude respéfise , w2 )| of the system. (b) Phase resporgen , w2 ) of the system; phase estimates
O(wy,w2) for (c) N = 128 x 128 and SNR= 5 dB. (d) NV = 128 x 128 and SNR= . () N = 256 x 256 and SNR= 5 dB.
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Fig. 6(g), one can see thé(wl,WQ) approximate®(w;,w2) was used whose magnitudf (w;,ws)| and phasé(wy, ws)

[see Fig. 6(b)] well and thale(wy,w2)| is smaller for those responses are shown in Fig. 7(a) and (b), respectively. Spectral

(w1,w2) Where |H(wy,w2)| [see Fig. 6(a)] is larger. Thesenulls in |H (w1, w2)| and discontinuities (jumps &r or 7) in

simulation results are consistent witl) as well asP4) and 6(w;,w-) can be seen from these Fig. 7(a) and (b). Synthetic

demonstrate the phase retrieval capabilityMiorithm 2 fields z(m,n) were generated folv = 128 x 128, N =
Example 5—2-D System Phase with Discontinuitiés: 256 x 256, SNR = 5 dB and SNR= oo, following the

nonseparabld x 3 MA system with transfer function given by same procedure as Example 4. Then, each synthetic 2-D field

x(m,n) was processed bylgorithm 2 with A/ = 3 and

. pl = p2 = 5 (and thusP,,, = 60). .

+0.321 +1 =022 The obtained continuous system phase estimé(es, w-)

406221251 +0.525 1 +0.727 25t (51) for N = 128 x 128 are shown in Fig. 7(c) and (d) for SNR

H(z1,20) = —0.832129 + 0442y + 0.327 22
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Fig. 7 (continued). 2-D simulation results fa = 3 associated with Example 5 obtained Bygorithm 2 with p1 = p2 = 5 (Pywum = 60) for a

nonseparable 2-D system with discontinuities in phase responsg.#)256 x 256 and SNR= ~c. (g) Phase estimation errefw , w2 ) associated with (f).

=5 dB andco, respectively. The results fa¥ = 256 x 256 an optimum allpass filter that is obtained by maximizing a
corresponding to those shown in Fig. 7(c) and (d) are shownsimgle absolute cumulant of the allpass filter outgugorithm
Fig. 7(e) and (f) (SNR= 5 dB andwo), respectively. Again, 1 ARMA-CausafAnticausa) andAlgorithm 1 Fourierare used
one can see from Fig. 7(b)—(f) thé(wl,wQ) approximates for 1-D LTI systems andAlgorithm 2 (associated with the
the true system phag¥w,,w-) better for larger’V-and SNR, Fourier series-based allpass model) for 2-D LTI systems. These
although #(w;,w2) has discontinuities. Moreover, Fig. 7(g)algorithms are iterative optimization algorithms with a parallel
shows the phase estimation eregw;, w2 ) associated with the structure suitable for efficient implementation of both software
phase estimaté(wl,wg) shown in Fig. 7(f)(IV = 256 x 256 and hardware. Moreover, optimum allpass filters obtained by
and SNR= cc). As predicted [sed4) and P5)], |e(w1,w2)| the proposed phase estimation algorithms can be thought of as
is small for all (wy,ws), wheref(wy,ws) is continuous, but optimum phase equalizers to the unknown system of interest.
large phase estimation error can happen in the vicinity of those channel equalization (in communications), the unknown
(w1,ws), wheref(wy,ws) is not continuous. In order to give channel (or system) can be a phase distortion channel [25, p.
a further insight of the estimated continuous phé@el,@), 441], [37], although it frequently is a nonminimum phase LTI
Fig. 8 shows four slices (dashed lines) of the phase estimate@nnel. The performance of the proposed phase-estimation
(w1, w2) shown in Fig. 7(f) forw; = kr/7,k = 0,2,4,6 method depends on SNR and channel phase characteristics
together with the associated four slices of the t#(e;,w,) associated with the data to be processed. Whether prepro-
(solid lines). The slice associated withy, = 0 shown in cessing of the given data such as amplitude equalization can
Fig. 8(a) indicates that the trué(w;,w,) (solid line) has improve the performance of the proposed phase estimation
a discontinuity of2x, and the estimated continuous phaseethod needs further study (as mentioned in Example 2). Let
é(wl,wQ) also approximate®(w;,w») well, except in the us emphasize that the proposed 1-D and 2-D phase-estimation
vicinity of the discontinuity. These results are consistent withlgorithms are not only applicable when the phase of the
the results presented in Example 2 for a 1-D system witiknown LTI system is of interest but also applicable in
discontinuous phase. The slice associated with= 47/7 collaboration with amplitude estimators for the identification
shown in Fig. 8(c) indicates that the phase-estimation ernd equalization of the system (as mentioned in Example 3).
|e(wi,w2)| can also be larger for those frequencigs;) A performance analysis for the proposed phase-estimation
where the absolute value of group delayd8(w;,w-)/dw-) algorithms was also presented, and the analysis leads to six
is larger, i.e., the system phase has a steeper variation. Forpghaperties of the proposed phase-estimation algorithms. Then,
other slices shown in Fig. 8(b) and (@)1 ,w.) approximates some simulation results for different cumulant ordet data
6(w1, wo) well since the latter is continuous with small grougength N, and SNR, as well as some experimental results with
delay. real speech data, were offered to support that the proposed
The simulation results presented in this section support thitase estimation algorithms can be used to estimate the phase
the proposed 1-D and 2-D cumulant-based phase-estimatigri-D and 2-D LTI systems. The simulation results were also
algorithms are effective for both 1-D and 2-D LTI systems. consistent with the performance analysis. However, we would
like to make the following remarks regarding the presented
simulation and experiment:

VI. DISCUSSION AND CONCLUSIONS R9) The proposed 1-D and 2-D phase-estimation al-
Based on the ARMA allpass model, the proposed Fourier gorithms may still converge to a local optimum
series-based allpass model, and Theorem 1, we have presented solution, although the use of different choices for the
a parametric cumulant-based phase-estimation method imple- parameters in S1) of Algorithm 1 can reduce this
mented byAlgorithms land 2 for estimating the phase of possibility for the 1-D case. The values sfused
1-D and 2-D nonminimum phase LTI systems with only non- in the presented simulation and experiment are good

Gaussian measurements. The system phase is estimated from choices only for these simulation and experimental
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results. In other words, a good choice focan only phase estimators of the three categories. Again, as men-

be obtained by comparing the resultant objectivoned in the introduction, there are not many 2-D cumulant-

functions J(a,) through some choices fax. based phase-estimation algorithms [22]-[24] reported in the
Algorithm 1 Fourieris computationally faster than literature; meanwhile, their performance and efficiency are

Algorithm 1 ARMA-CausglAnticausa) with similar  limited by the phase unwrapping problem. Moreover, MP-

performance as discussed R4), but for the latter, AP decomposition-based methods have yet to be extended

there are not any rules available yet for the choio@ the 2-D case. ThusAlgorithm 2 can be a quite efficient

of the ARMA allpass model to be causal stablene. Extension of the proposed phase-estimation algorithms

or anticausal stable, which can always lead to beg the k-dimensional §-D) (k > 2) case is also feasible
phase-estimation accuracy with least computationgy the same theorem (Theorem 1) withand n defined as
expense. This may need further study. 1 x k row vectors. Applications of the proposed cumulant

any of the three categories of cumulant-based phase estimatsonvolution, equalization, time delay estimation (estimation
mentioned in the introduction because they are based aihthe time interval that a single source signal arrives at

philosophies that are different from those associated witivo spatially separate sensors), signal detection, and harmonic
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retrieval are under study, and the results will be reported oy the Schwartz inequality. Next, one can easily show, by

the future. (39), that
APPENDIX A /_7T o /_7T |SMy (Wi, '7wM—1)|62(w1 + ot wn-1)
PROOF OF (30) cdwy - dwpr_y
Becausey(n) is the output of the allpass filtdt,(«) with (" N g 2/
the inputx(n)7ay(n)/aan“m: 1727...7p can be expressed = _Tr... . | M,y(CU1,...,wM—1)|6 (Wz)
as cdwy e dwar—
oyn) _ 0 [1 [ o = [ it ?(w;
= — . . plwn ) . = My(w1, s wa-1)]e”(w;)
aarn aa/nl 2m /—7-; HP(W) X(W) © d (A 1) -7 -7 Y ’
cdwy - dwyr—y, forallj#i (B.2)

Substituting (4) into (A.1), we obtain i ) ! : .
where the first equality (the first two lines) of (B.2) is proved

= P by changing variables of
) _ 9 i/ exp 35 Yy - sin (hw)
am  Oam | 27 J_; el M=wrt - FTwy-_1, T2=—Ww2 ", NM-1 = —Wp-1
X (w) el dw} and by the fact thatfH(w)| = |H(—w)| (which is an even
function). Then we can obtain, from (39), (43), (B.1), and

Lo { { zp: (B.2), that
= exp < j Y ag-sin(kw) } } el
2r J_ Oam, — F< |’YJ\4|M2/ / (wi) - H(wm-1)

(W) -e v H(wy + - +wn-1)|e*(wi) dwy -+ dwpr—;

1 < -
=5/ J -sin (mw) - exp {j Zak 'Sln(kw)} = |yn| M2 / /

k=1

. . pdwn
1X(w72 e dw . {/ |H(wo)H (w1 + -+ 4 wrr—1)| de}
= — 4. . H X . pdwn d _x
) ) by S e NH(w)H(ws) - - H(wpr—1)|e2(wy)
— 21 J . sin (mw) . Y(Cd) . ejwn dw (AZ) . dwl dw;g - dw]\l—l
(e —

<bulv{ [ as)
which is nothing but the inverse Fourier transformiofw) -
J +sin(mw). Therefore (A.2) can also be expressed as the / / (w1)H(ws) -+ H(wpr—1)]
convolution ofy(n) and the inverse Fourier transform of -7 -7
ce2(wy) dwy dws -+ - dwpr_1 (B.3)
where we have applied the Schwartz inequality to the integral
inside the braces in the second line of (B.3). It is trivial to

Jesin(mw) = % {ejwm _ e_j“"m}

as follows: see that the right-hand side of (B.3) is equal to the right-hand
™ ' ' ' side of (45).
85;6571) = {% / %[e]‘“m - e_]“"m] oAl dw} * y(n) Q.E.D.
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